{ "cells": [ { "source": [ "# Tutorial 3 - Standard membership functions" ], "cell_type": "markdown", "metadata": {} }, { "source": [ "This tutorial uses the fuzzy inference system developed in Tutorial 1." ], "cell_type": "markdown", "metadata": {} }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "import os\n", "import warnings\n", "\n", "os.chdir('/workspaces/fuzzy-expert')\n", "warnings.filterwarnings(\"ignore\")\n" ] }, { "source": [ "## Specification of the fuzzy variables with standard membership functions" ], "cell_type": "markdown", "metadata": {} }, { "source": [ "In the following code, fuzzy sets are specified using standard membership functions, which are described in the function reference section.\n", "\n", "Fuzzy sets in variables `score` and `ratio` are specified using the `smf` and `zmf` functions. Fuzzy sets for variables `credit` and `decision` are specified using the `trapmf` function." ], "cell_type": "markdown", "metadata": {} }, { "cell_type": "code", "execution_count": 2, "id": "d0b87f10-2777-43f0-ab20-9c516cf20dd3", "metadata": { "tags": [] }, "outputs": [], "source": [ "import matplotlib.pyplot as plt\n", "import numpy as np\n", "\n", "from fuzzy_expert.variable import FuzzyVariable\n", "\n", "variables = {\n", " \"score\": FuzzyVariable(\n", " universe_range=(150, 200),\n", " terms={\n", " \"High\": ('smf', 175, 190),\n", " \"Low\": ('zmf', 155, 175),\n", " },\n", " ),\n", " \"ratio\": FuzzyVariable(\n", " universe_range=(0.1, 1),\n", " terms={\n", " \"Goodr\": ('zmf', 0.3, 0.42),\n", " \"Badr\": ('smf', 0.44, 0.7),\n", " },\n", " ),\n", " #\n", " \"credit\": FuzzyVariable(\n", " universe_range=(0, 10),\n", " terms={\n", " \"Goodc\": ('trapmf', 0, 0, 2, 5),\n", " \"Badc\": ('trapmf', 5, 8, 10, 10),\n", " },\n", " ),\n", " #\n", " \"decision\": FuzzyVariable(\n", " universe_range=(0, 10),\n", " terms={\n", " \"Approve\": ('trapmf', 5, 8, 10, 10),\n", " \"Reject\": ('trapmf', 0, 0, 2, 5),\n", " },\n", " ),\n", "}" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [ { "output_type": "display_data", "data": { "text/plain": "
", "image/svg+xml": "\n\n\n \n \n \n \n 2021-06-24T19:40:45.928169\n image/svg+xml\n \n \n Matplotlib v3.4.2, https://matplotlib.org/\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n", "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAD4CAYAAAD8Zh1EAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAAApu0lEQVR4nO3deXxV1bXA8d/KTAZCEmYCBjAgEGZEZqwjOICKA/a1Wu2rz7ZOtbV1aK3a11frs7VOreJQh1p5Kg44FYeqhJnIaJhHCTMJIYHMyX5/nEvuTUhIQu7Nvvfc9f18+GTvc05u1uEmKzv77EGMMSillAp9EbYDUEop5R+a0JVSyiU0oSullEtoQldKKZfQhK6UUi4RZfFr6/AapZRqOWnshLbQlVLKJTShK6WUS2hCV0opl9CErpRSLqEJXSmlXEITulJKuUSTCV1EXhSRAyLyTSPnRUSeEJEtIrJGREb4P0yllFJNac449JeAp4BXGjk/Fcj0/DsL+Jvno/+VFcGelQF56WYRgc6DICHNXgxKuYQxhg37ijl8rMJ2KFYM69WB+Bj/TgVq8tWMMfNFJOMkl0wHXjHOOrxLRKSDiHQzxuz1V5C18jfDK9P8/rItEhENAy6FUTdCxgQnySulWiRnRwF/+HgDX+88bDsUaz67czKnd07062v6ow+9B7DLp57nOXYCEblJRHJEJGfWrFl++NIW1FRC7tvw8iXw1Jmw+K9QUmA7KqVCwpYDxfzolRyufGZxWCfzQGnTqf/GmFnA8Uze8qn/MUmQMdGvMbVIWSHsW+ut52+GeffA5w/CoCtg1A2Qfqa22pWqZ9+RMv7y2SbeyNlFjc9PfnSkMKJXChFh+DPTLibS768pzdmxyNPl8oExJquBc88CXxpjXvfUNwJnN6PLJTTXctmfCzl/h9WzoaL4xPNdspzEPvhqiGvf9vEpFUSKyip55sutvLhwO2WVNXXOXTasOz+/oD89U+MtRReyGv3t54+EfjFwC3ARzsPQJ4wxo5sRVGgm9OPKj8I3cyDnBdi7+sTz0Qkw5Cqnr73b0LaPTymLyquqeXXxTp76YguFJZV1zk3M7MivppxBVo9kS9GFvFNP6CLyOnA20BHYD/wWiAYwxjwjIoIzCmYKUALcYIzJaUZQoZ3Qfe1eATkvwtq3oKr0xPM9RsLIGyBrBsRoa0S5V02N4b3Vu3l03iZ2F9b9WRjUvT33TB3AhMyOlqJzjda10APEPQn9uNJCWPOGk9wPrj/xfGJX+P7b0GVQm4emVKBVVddw48s5zN90sM7xnqnt+MUF/bl0SHciIsKvrzwANKG3KWPg2yVOYl/3LlT7jLNN7gU3fQEJ2kpR7vJ89jb++0NvQyYlPppbz8nkP8b0IjbK/w8Aw5gmdGuO5cOq1+CrR7wPUU8bD99/F6JirIamlL/sKSzlvD9/RUlFNQDXju7JPRcNoH1ctOXIXEk3uLAmIQ3G3wYznqf2fdi5ED6+y2nJK+UCD72/rjaZZ3ZO5MFpWZrMLdCE3lb6T4Hzfuutf/0SLH/eWjhK+cu/N+znX7n7auv/fVkWMVGaWmzQ//W2NP4OGHyVt/7xr2DbV9bCUaq1Siuquf+93Nr6lSPTOauPrnVkiyb0tiQC056E7sOduqmGN6+Hgm1241LqFD35783kHXaGJ3aIj+aeqWdYjii8aUJva9HtYOY/nSGMAKWH4fVrnZUklQohm/cX81y2tzFyz9QzSEuMtRiR0oRuQ/vuMPM1iPR88x/cAG/fBDU1J/88pYKEMYb73v2Gymrnwf7I01K4amRPy1EpTei2pI+CaU9465s+hi/+2148SrXAnBW7WbbdWWU0MkL4/eVZOmkoCGhCt2noTBh3m7ee/Sdn+QClglhhSQX/85F3AtF/TujNGV11IbpgoAndtvMegMwLvPX3fuqsDaNUkPrjvzZQ4NllqHtyHLedm2k5InWcJnTbIiKdSUcd+zn1qjKY/R9QvO/kn6eUBV/vLOD1Zd79bB6YNoiE2DbdVkGdhCb0YBCXDNfOdj4CFO9xknplmd24lPJRWV3Dfe9494o/b0AXLhjU1WJEqj5N6MEirS9c9RKI5y3ZnQMf3KHLA6ig8dLCHWzY56xH1C46kgemDbQckapPE3ow6XsOXPg/3vrq12HxU/biUcpjT2Epj322qbZ++3mZpKfo2v7BRhN6sDnrZhj+fW/90/th86f24lEKePD93NrFt/p1SeSHE3pbjkg1RBN6sBGBi/8EPcc4dVMDb90IBzed/POUCpDP1+9nXu7+2vrvLx9MdKSmjmCk70owioqFa16F9ulOvbwIXp/pLBOgVBuqv/jW1aPSOTMj1WJE6mQ0oQerxM5w7T8h2tNPWbAVPvmN3ZhU2Hlp0Y7avUFT4qO5e+oAyxGpk9GEHsy6DYXL/uqtr34dDu+wFo4KL8YY3szxjjn/xYX9SU3QXbaCmSb0YDfocsiY6JRrqmDBY3bjUWFj1a5Cth06BkBibBRXDE+3HJFqiib0UDD5V97yytegcFfj1yrlJ3NW5NWWLxrclXYxutFzsNOEHgoyJkCvcU65plJb6SrgyquqeX/13tr6FSO0dR4KNKGHAhGY/EtvfeWrcGS3vXiU6/17/QGOlFYCkJ7SjtE6siUkaEIPFX3OhvTRTrm6AhY+bjUc5W6+3S1XDO+ha52HCE3ooUKkbl/61y/piowqIA4dLefLjQdr69rdEjo0oYeS08+F7iOccnU5LHzi5NcrdQrmrtpDVY2zKNyo01LI6JhgOSLVXJrQQ0n9VnrOi3D0gL14lCvV6W7R1nlI0YQeavpd6Ew4AqgqhUXaSlf+s2FfEbl7igCIiYrg4iHdLEekWkITeqip30pf/gIcO2QvHuUqb6/wjp46f2AXkttFW4xGtZQm9FDU/yLoMtgpV5bomunKL6qqa3hnpTehX6ndLSGnWQldRKaIyEYR2SIidzdwvpeIfCEiK0VkjYhc5P9QVS0RmHyXt77sOSgpsBePcoUFWw5xsLgcgI6JsUzM7Gg5ItVSTSZ0EYkEngamAgOBa0Wk/t5TvwbeMMYMB2YCf0UF1hmXQifPyncVR2GJ/per1pnj091y2bDuROma5yGnOe/YaGCLMWabMaYCmA1Mr3eNAdp7ysnAHv+FqBoUEVG3lb70WV0vXZ2yorJKPsn1zmuYMVK7W0JRcxJ6D8B3Nag8zzFfDwDfE5E84CPg1oZeSERuEpEcEcmZNWvWKYSr6hh4GXTs55TLi5ykrtQp+GjNXsqragAY0K09A7q1b+IzVDDy199U1wIvGWPSgYuAV0XkhNc2xswyxowyxoy66aab/PSlw1hEJEzyaaUv+SuUHbEXjwpZvqNbZoyo315ToaI5CX030NOnnu455uuHwBsAxpjFQBygT1TaQtYMSDvdKZcdgaX6l49qmW/zS1i2w3moHhkhTB+mCT1UNSehLwcyRaS3iMTgPPScW++ab4FzAURkAE5CP4gKvIhImPgLb33xU1BebC8eFXJ8Z4ZO7teJTkmxFqNRrdFkQjfGVAG3APOA9TijWXJF5CERmea57OfAj0RkNfA68ANjjAlU0KqewVdBSoZTLit0hjEq1QzGGN5e6U3oM3TseUgTi3lXE74/rXgV5t7ilOPT4PY1EJtoNyYV9JZtL+DqZxcD0D4uimX3nUdctO5MFOQaXctYB5q6xdCZkNzLKZfkOwt3KdWEt326Wy4Z2l2TeYjThO4WkdEw8U5vfdETUFFiLx4V9Moqq/lwjXebOe1uCX2a0N1k2HehveeH8thBZxMMpRoxL3cfxeVVAPTumMCIXh3sBqRaTRO6m0TFwoQ7vPWFf4HKUlvRqCDnO/b8iuE9ENFt5kKdJnS3GXEdJHV3ykf3w4pX7MajgtL+ojKyN3tHFl82XMeeu4EmdLep30pf8BhUllkLRwWnd1fuxrPLHGP6pNIzNd5uQMovNKG70YjrILGLUy7eC6v+YTceFVSMMXUmE+nDUPfQhO5G0e1g/O3eevZjUFVhLx4VVHL3FLFp/1EA2kVHMnWwbjPnFprQ3WrkDZDQySkX5cHqf9qNRwUN39b5lKyuJMZGWYxG+ZMmdLeKiYdxPqsYL3wCdDWGsGeM4ZPc/bX1K3RlRVfRhO5mo34IsZ51rQu2wp4VduNR1u3ML2F3oTOUNSEmkjF90ixHpPxJE7qbxSbCgEu99bVv2YtFBYUFWw7Vlsf0SSNat5lzFX033W7wld7yN3OgptpeLMq6hT4JffzpumWB22hCd7uMSZDQ2Skf3Q87su3Go6yprjEs3pZfW9eE7j6a0N0uMgqyrvDW175pLxZl1bo9RRSWVALQMTGWfl10eWW30YQeDgZf5S2vm6szR8OUb//5hNPTdO0WF9KEHg56jPTuaFReBJs/sRqOsmPRVu0/dztN6OFApG4rXbtdwk5ZZTXLthfU1jWhu5Mm9HDhm9A3zYOyI/ZiUW1uxc7DlFfVANCnYwLdO7SzHJEKBE3o4aJTf+g62ClXl8P6D+zGo9rUAh2uGBY0oYcT7XYJWwu3+g5X1NmhbqUJPZxkXUnthuHbv4Li/Se9XLnDkZJK1uYVAs7jlLF9tIXuVprQw0lyDzhtvFM2NZD7jt14VJtYvC2/djOLIT2SSY6PthuQChhN6OHGdykA7XYJC77DFcdp/7mraUIPNwOnQ4SnhbY7Bwq22Y1HBVzdCUWa0N1ME3q4iU+F08/z1tfOsReLCri9R0rZdvAYALFREYw8LcVyRCqQNKGHozrdLm/oxhcutnCLd3TLmRmpxEVHWoxGBZom9HDUfypEJzjlQ5tg3xq78aiA8V0ud5wOV3Q9TejhKCYBzrjYW9eHo65kjNH+8zCjCT1c1ZlkNAdqauzFogJi84GjHCwuByC5XTSDuidbjkgFWrMSuohMEZGNIrJFRO5u5JqrRWSdiOSKiG4xH+z6fgfapTrl4j3w7SK78Si/8+1uGdsnjcgIXS7X7ZpM6CISCTwNTAUGAteKyMB612QC9wDjjTGDgDv8H6ryq8hoGHS5t67dLq5TZ7u5TO1uCQfNaaGPBrYYY7YZYyqA2cD0etf8CHjaGHMYwBhzwL9hqoAYcrW3nPsuVFVYC0X5V1V1DUu2eZfL1f7z8NCchN4D2OVTz/Mc89UP6CciC0VkiYhMaeiFROQmEckRkZxZs2adWsTKf9JHQ3Ivp1xWCFs/txqO8p/VeUc4Wl4FQPfkODLS4i1HpNpClB9fJxM4G0gH5ovIYGNMoe9FxphZwPFMroOfbYuIgMEzYMFjTn3tm86QRhXyFtZbLle3mwsPzWmh7wZ6+tTTPcd85QFzjTGVxpjtwCacBK+Cne9olw0fQflRe7Eov6kzXFH7z8NGcxL6ciBTRHqLSAwwE5hb75p3cVrniEhHnC4YXSQkFHQZBJ09z7irSmHDh3bjUa1WUlHFym8P19bH9dWEHi6a7HIxxlSJyC3APCASeNEYkysiDwE5xpi5nnMXiMg6oBq4yxiT3/irqqAy+Er4/CGnvPZNGHqN3XhUqyzbXkBltdOj2b9LEp2SYi1H5F+VlZXk5eVRVlZmO5SAiouLIz09nejo5i93LMbeOh7ahx4sDu+Ax4c6ZYmEX2yCBG3Vharff7iO57K3A3Dj+N7cf+nAJj4jtGzfvp2kpCTS0tJc+2zAGEN+fj7FxcX07t27/ulGb1pniipIyYCeZzllU60bX4S4BT4Lck3IdN/6LWVlZa5O5gAiQlpaWov/CtGErhx1lgJ4y14cqlXyj5azfm8RAFERwuje7kvogKuT+XGnco+a0JVj4GVOdwvAriVweKfVcNSpWeSzGfSwnh1IjPXXyGTlKzExsU79pZde4pZbbgHgmWee4ZVXXjnp5/te70/6bitHYifoew5s+dSpfzMHJt5pNybVYvXHn6u2d/PNN1v72tpCV17a7RLyFm7VhG7bAw88wKOPPgrA8uXLGTJkCMOGDeOuu+4iKyur9ro9e/YwZcoUMjMz+eUvf+mXr60tdOV1xkUQ1c4Zj34gF/bnOuPUVUj4Nr+EXQWlAMTHRDKsZwe7AbWBjLsDN29ix8MXN3qutLSUYcOG1dYLCgqYNm3aCdfdcMMNPPfcc4wdO5a77667UO2qVatYuXIlsbGx9O/fn1tvvZWePXue8BotoS105RWbVHfqv7bSQ4rv7NCzeqcSE6U/3oHSrl07Vq1aVfvvoYceOuGawsJCiouLGTt2LADf/e5365w/99xzSU5OJi4ujoEDB7JzZ+ufW+k7ruqq3+2i+42GDO1uCS2xsd4JX5GRkVRVVbX6NbXLRdV1+nkQ18FZffHIt7BrKfQaYzsq1YSaGsOiMHwgerJuEds6dOhAUlISS5cu5ayzzmL27NkB/5raQld1RcXAQJ/l7nXji5Cwbm8Rh0sqAeiYGEP/LkmWI1IAL7zwAj/60Y8YNmwYx44dIzk5sNsA6tR/daLt2fDyJU45Pg1+vtHZ4UgFrWe/2sofPt4AwLSh3Xni2uGWIwqc9evXM2DAANthNMvRo0drx6w//PDD7N27l8cff7zZn9/IverUf9UCp42DpO5OuSQftn1pNRzVtIU+E4rGn+7O2aGh6MMPP2TYsGFkZWWRnZ3Nr3/964B+Pe1DVyeKiISsK2DxU0597ZuQeb7dmFSjyquqWbbdN6GHR/95KLjmmmu45pq2W71UW+iqYb6jXdZ/ABUl9mJRJ7ViZyFllTUAZKTFk56i282FK03oqmHdhkLHfk658hhs+thuPKpRi3yGK47T1nlY04SuGiaiSwGEiDrbzWlCD2ua0FXjsmZ4y5s/hZICe7GoBhWVVbJ6VyHg/A4e20cfiIYzTeiqcWl9ocdIp1xTCevrbyWrbFu6rYAazwDgrO7JpCTE2A0oTNRfPjdYaEJXJ6fdLkHNd7nccTpcMexpQlcnN+hyEM+3yY4FcGS33XhUHdp/HjxWrVrFmDFjGDJkCJdffjmHDx/mwIEDjBzp/JW7evVqRIRvv/0WgL59+1JS4t/RYzoOXZ1cUlfoPckzucg4G1+Mv812VArYd6SMLQeOAhATFcGZGamWI7LggQBOpX/gSIsuv+6663jyySeZPHky999/Pw8++CB/+ctfKCsro6ioiOzsbEaNGkV2djYTJkygc+fOxMf7d4ipttBV0+p0u+jaLsHCd7jiyF4pxEVHWowmvB05coTCwkImT54MwPXXX8/8+fMBGDduHAsXLmT+/Pnce++9zJ8/n+zsbCZOnOj3ODShq6YNuBQiPUt97lsDBzfajUcB9bpbMrW7JVhNmjSJ7Oxsdu7cyfTp01m9ejULFiwISELXLhfVtLhk6HcBrH/fqa99C865z25MYc4Yo/uHQou7RQIlOTmZlJSU2pb3q6++WttanzhxIvfddx+TJk0iIiKC1NRUPvroI/7whz/4PQ5N6Kp5Bl/lk9DfhO/c6wx8VlZsPXiM/UXlACTFRTG4R2CXZVV1lZSUkJ6eXlu/8847efnll7n55pspKSmhT58+/P3vfwcgIyMDYwyTJk0CYMKECeTl5ZGSkuL3uDShq+bJvBBi20N5ERzeDrtXQPpI21GFLd/W+dg+aURG6C/XtlRTU9Pg8SVLljR4fNeuXbXle++9l3vvvTcgcWkfumqe6DgY4LMJrj4ctUr7z1VDNKGr5ht8pbf8zRyoqbYXSxirqq5hyTZdLledSBO6ar7ekyChs1M+dgC2z7cbT5hau/sIxWXOhsJd28fRp2OC5YhUsNCErpovIrLugl3a7WJF/dEtEoYPpy1undlmTuUeNaGrlvGdZLRuLlSW2oslTNXtPw+/9Vvi4uLIz893dVI3xpCfn09cXFyLPq9Zo1xEZArwOBAJPG+MebiR62YAbwFnGmNyWhSJCg09RkBKb2ekS0UxbP4EBk63HVXYKK2oZsXOwtr6uL7h13+enp5OXl4eBw8etB1KQMXFxdUZGtkcTSZ0EYkEngbOB/KA5SIy1xizrt51ScDtwNIWRaBCy/GNL+Y/4tTXvqkJvQ0t31FARbUzZC6zcyJd2resBecG0dHR9O7d23YYQak5XS6jgS3GmG3GmApgNtDQT/DvgD8CZX6MTwUj39Eumz6B0kJroYQbnR2qTqY5Cb0HsMunnuc5VktERgA9jTEfnuyFROQmEckRkZxZs2a1OFgVJDr1h65DnHJ1OWz4wG48YWThVk3oqnGtnikqIhHAn4EfNHWtMWYWcDyTu/eJRjgYcrWzUBc43S7Dv2c3njBQcKyC3D1FAERGCGf1CcPlctVJNaeFvhvo6VNP9xw7LgnIAr4UkR3AGGCuiIzyV5AqCA26AvAMl9s+H4r3WQ0nHCzems/xgR1D05NpHxdtNyAVdJqT0JcDmSLSW0RigJlA7eaSxpgjxpiOxpgMY0wGsASYpqNcXC65B2RMcMqmBnLfsRtPGPDtbtHdiVRDmkzoxpgq4BZgHrAeeMMYkysiD4nItJN/tnI134ejOsko4OruH6oJXZ1ILA7O1z70UFdSAI/2g5pKp37rCkjrazcml9pVUMLER74AoF10JKt+ez6xUbpDUZhqdGqwzhRVpy4+FTLP99bXvmUvFpfzbZ2P7p2qyVw1SBO6ap363S4uno5t08Ktvqsrht90f9U8mtBV6/SbCtGe1f7yN8Pe1XbjcaGaGsMinVCkmkETumqdmHgYcIm3rg9H/W7DvmLyj1UAkJoQw4Cu7S1HpIKVJnTVer4rMOrGF363yGe44ti+aUTodnOqEZrQVev1ORviPf26xXth5yKr4bhNneVytbtFnYQmdNV6kdGemaMe2u3iNxVVNSzdVlBb14SuTkYTuvKPOhtfvAdV5fZicZFVuwoprXS6sHqlxtMzNd5yRCqYaUJX/tFzNHTo5ZTLCmHL51bDcYsFdUa36HBFdXKa0JV/iECWLgXgb7r+uWoJTejKf3y7XTZ+DOXF9mJxgeKySlbtKqyth+N2c6plNKEr/+kyEDoPcspVpbDhpPudqCYs215AdY0z83Zgt/akJsRYjkgFO03oyr90BUa/qTNcMVNb56ppmtCVf2XN8Ja3fgFH3b0zeyBp/7lqKU3oyr9SToOeY5yyqYZ171oNJ1QdKC5j0/6jAERHCmdmpFiOSIUCTejK/7TbpdUWbfGurjiiVwrxMa3e/leFAU3oyv8GXQERngS0aykUbLcbTwjS6f7qVGhCV/6XkAZ9z/HWFz9lL5YQVF5Vzafr9tfWx+sDUdVMmtBVYJx1s7e84hUo2mMvlhDzxYYDHCl1tvVLT2nHsPQOdgNSIUMTugqMvudA+plOuboCFj5uN54Q8tbXu2vLVwzvocvlqmbThK4CQwQm/8pb//olKN5nLZxQkX+0nC83HqitXzEi3WI0KtRoQleBc/p50H24U64qg0VP2o0nBMxdvYcqz+zQkaelkNExwXJEKpRoQleBU7+VvvwFnWjUhDkr8mrLM7R1rlpIE7oKrH5ToOtgp1xVCou1ld6YjfuK+WZ3EQAxURFcPKSb5YhUqNGErgKrfit92fNwLL/x68PY2z6t8/MHdiG5XbTFaFQo0oSuAq//xd5VGCuP6bj0BlRV1/DOSu/oliu1u0WdAk3oKvAiImDyXd76sllQUtD49WFo4dZ8DhQ72/Z1TIxlok4mUqdAE7pqGwOmQ6cznHLFUVjyN7vxBJk5X3u7Wy4b1p2oSP3RVC2n3zWqbUREwCSfVvrSZ6C00Fo4waSorJJ5ud4x+jr2XJ0qTeiq7Qy6HNIynXJ5ESx91m48QeLjtXspr6oBYEC39gzs3t5yRCpUNSuhi8gUEdkoIltE5O4Gzt8pIutEZI2IfC4ip/k/VBXyIiLrttKXPA1lRfbiCRJzfKb6zxjRw2IkKtQ1mdBFJBJ4GpgKDASuFZGB9S5bCYwyxgwB3gIe8XegyiWyZkBqH6dcdsR5QBrGvs0vYdkO5wFxZIQwfZgmdHXqmtNCHw1sMcZsM8ZUALOB6b4XGGO+MMaUeKpLAO0EVA2LjIKJv/DWFz8F5cX24rHs7ZXeh6GT+3WiU1KsxWhUqGtOQu8B7PKp53mONeaHwMcNnRCRm0QkR0RyZs0K75ZZWBtyNXTw9MqVHoblz9uNxxJjDG+v8FlZUbtbVCv5dV8rEfkeMAqY3NB5Y8ws4HgmN/782iqEREbDxJ/D+7c59UVPwuibICa8FqLK2XmYbwucP2yT4qI4b0AXyxGpUNecFvpuoKdPPd1zrA4ROQ+4D5hmjCn3T3jKtYZeC8meb6uSfMh50W48FviOPb9kSHfioiMtRqPcoDkJfTmQKSK9RSQGmAnM9b1ARIYDz+Ik8wMNvIZSdUXFwISfeesLn4CKksavd5myymo+XLO3tn7lSO1uUa3XZEI3xlQBtwDzgPXAG8aYXBF5SESmeS77XyAReFNEVonI3EZeTimv4d+D9p5EduwArHjZbjxt6JN1+ykurwIgIy2eEb1SLEek3ECMsdaVrX3oCpY9Bx95Rr0kdoXbV0N0nN2Y2sD1Ly7jq03O2vB3nt+P287NtByRCiGN7kmoM0WVXcO/7yRygKP7YOWrduNpAweKysje7N3o4/Lh2t2i/EMTurIrOg4m3OGtL3gMqtz9TP3dVbvx7DLHWb1T6Zkabzcg5Rqa0JV9I66HhM5OuWg3rPyH3XgCyBhTd6r/SJ2Dp/xHE7qyLyYext/mrS94DKoq7MUTQLl7iti435kZGxcdwdSsrpYjUm6iCV0Fh1E3QnyaUz6yC1a/bjeeAPHdBHrKoK4kxek2c8p/NKGr4BCTAONu9daz/wTVlfbiCYDK6hrmrtpTW9fuFuVvmtBV8DjzP6GdZzx24U5Y84bdePzsq40HyT/mdCV1bR/HuL66zZzyL03oKnjEJsHYn3rr2Y9CdZW9ePzMt7vlsuE9iIxodDixUqdEE7oKLqP/C+KSnXLBNsh5wW48fnKguIzP13tXxdCNLFQgaEJXwSWuPYzxaaXPuxd2LLQXj5/8/sP1VFQ728wNTU8ms0uS5YiUG2lCV8Fn3K3QdYhTrqmCN74Ph3fajakVFmw+xHs+D0PvuvAMi9EoN9OEroJPTDzM/CckdHLqJfkw+7tQftRuXKegrLKa37z3TW192tDuTMjUh6EqMDShq+DUoSdc8w+I8IzT3v8NvPNfUFNjN64WevarbWw/dAxwNrH49SUDLEek3EwTugpevcbAJY956xs+gK8ethdPC+04dIynv9xSW7/rwv50TnL/SpLKHk3oKriN+D6M+Ym3/tUfIfcde/E0kzGG37z3DRVVzl8UQ9KT+Y+zTrMclXI7Tegq+J3/O+jzHW/9nR/D3tX24mmGD9bsJXvzIQAiBH5/2WAdd64CThO6Cn6RUXDV3yG1r1OvKoXXvwtHg3O3w6KySh76YF1t/bqxGQxOT7YYkQoXmtBVaGiXAtfOhtj2Tr0oD/7ve0G5dvqfP9nEwWInrs5Jsdx5QT/LEalwoQldhY5O/eDKF6ndgWvXUvjwTrC3jeIJ1uQV8sriHbX1+y8dSHtdUVG1EU3oKrRkng/nP+Str/wHLH3WXjw+qmsM973zTe1uRBMzO3Lx4G52g1JhRRO6Cj3jboUhM731effA1n/bi8fjtaU7Wbv7CAAxURH8bnoWIvogVLUdTegq9IjApY9Dj1FO3dTAmz+A/K3WQjpQVMb//mtjbf2nZ59ORscEa/Go8KQJXYWm6DiY+Rokebo0yo7A6zOdjxb87sP1FJc7S/326ZjAzWf3sRKHCm+a0FXoSurqJPUoz+zLQ5tgzn9CTXWbhpG9+SDvr/YuvvW7y7KIjYps0xiUAk3oKtT1GAnTnvLWN38Cnz3QZl++rLKa37zrXXxr+rDujD9dF99SdmhCV6FvyFUw4Wfe+qInYPXsNvnSf/tyKzvySwBn8a37LtbFt5Q9mtCVO5xzP/Sb6q3PvQ2+fhkqSgL2JZdtL+BvX3ofxP5yyhm6+JaySoy9SRnBMxtEuUNZEbxwPhzc4D0WmwzDroWRN0Bn/2wssfXgUR751wbm5e6vPTY0PZm3fzJe12tRbaHRbzJN6MpdCrbBi1Pg6P4Tz502HkbdCAMuhajYFr/0gaIyHvtsM2/k7KK6xvvtmxATyRs3j2VQd12vRbUJTegqjJQUwMpXIefvcHj7iefj02D492DkDyC16eGFxWWVPPvVNl5YsJ3SyrojaC4d2p1fXNCP09J0zLlqM5rQVRiqqYHtXzqJfcOHYBoYztj3HKfV3m8KRNZdc6WiqobXlu7kyX9voeBYRZ1z4/qmcffUMxiS3iFw8SvVsNYldBGZAjwORALPG2Mernc+FngFGAnkA9cYY3Y08bKa0FXbKdrrrPvy9UvOSo31JXWDEdfBiOuoSerB+2v28OgnG9lVUFrnsgHd2nP31DOYlNlRp/UrW049oYtIJLAJOB/IA5YD1xpj1vlc8xNgiDHmZhGZCVxujLmmiaBanNDzDpfw7FfbWvppStUSU01m0RJG579LZtFiIup9G9YQQU70SDaUdqhzPCE2kuE9O9C7YyKax5VfTPolJHU5lc9sVUIfCzxgjLnQU78HwBjzB59r5nmuWSwiUcA+oJM5+Yu3OKGv3lXI9KcXtvTTlGpQDw4yM+oLZkZ+QSexs2SACmM/Xe4sCd1yjSb05oxD7wHs8qnneY41eI0xpgo4AqSdEIXITSKSIyI5s2bNasaXVipwdtOJP1VdzdjyJ/lxxe1kV2fZDkmpVolqyy9mjJkFHM/kLW6hd+/QjoemD/JvUEoBMJTt3MihYzvpeeRr+nWK040pVGAldvL7SzYnoe8GevrU0z3HGromz9PlkozzcNSvOiXFct3YDH+/rFI+MoDJtoNQ6pQ0p8tlOZApIr1FJAaYCcytd81c4HpP+Urg3030nyullPKzJlvoxpgqEbkFmIczbPFFY0yuiDwE5Bhj5gIvAK+KyBagACfpK6WUakM6sUgppUJLq0a5KKWUCgGa0JVSyiU0oSullEtoQldKKZew9lD0wQcf/BdwSpsvHj16tGNiYuIhP4cU1PSew4Pec3ho5T0f+u1vfzuloRM2R7mcMhHJMcaMsh1HW9J7Dg96z+EhUPesXS5KKeUSmtCVUsolQjWhh+NSjXrP4UHvOTwE5J5Dsg9dKaXUiUK1ha6UUqoeTehKKeUSQZnQReRFETkgIt/4HHtARHaLyCrPv4t8zt0jIltEZKOIXGgn6tZp6J49x28VkQ0ikisij/gcd+U9i8j/+bzHO0Rklc85t97zMBFZ4rnnHBEZ7TkuIvKE557XiMgIe5Gfmkbud6iILBaRtSLyvoi09znnhve4p4h8ISLrPD+3t3uOp4rIpyKy2fMxxXPcf++zMSbo/gGTgBHANz7HHgB+0cC1A4HVQCzQG9gKRNq+Bz/d83eAz4BYT72z2++53vk/Afe7/Z6BT4CpnvJFwJc+5Y9xVtcbAyy1Hb+f7nc5MNlTvhH4ncve427ACE85CdjkubdHgLs9x+8G/ujv9zkoW+jGmPk466o3x3RgtjGm3BizHdgCjA5YcAHSyD3/GHjYGFPuueaA57ib7xlwWi3A1cDrnkNuvmcDHG+lJgN7POXpwCvGsQToICLd2iZS/2jkfvsB8z3lT4EZnrJb3uO9xpgVnnIxsB5n3+XpwMuey14GLvOU/fY+B2VCP4lbPH+SvHj8zxWat4l1qOoHTBSRpSLylYic6Tnu5ns+biKw3xiz2VN38z3fAfyviOwCHgXu8Rx36z3n4iQxgKvwbnHpuvsVkQxgOLAU6GKM2es5tQ/o4in77b5DKaH/DegLDAP24vw57nZRQCrOn2F3AW94Wq7h4Fq8rXO3+zHwM2NMT+BnODuAudmNwE9E5GucLokKy/EEhIgkAnOAO4wxRb7njNPX4vcx4yGT0I0x+40x1caYGuA5vH+KNWcT61CVB7zt+VNsGVCDs6CZm+8Zz0bjVwD/53PYzfd8PfC2p/wmLv/eNsZsMMZcYIwZifNLe6vnlGvuV0SicZL5a8aY4+/t/uNdKZ6Px7tQ/XbfIZPQ6/UpXQ4cf2o+F5gpIrEi0hvIBJa1dXwB8i7Og1FEpB8QAxzC3fcMcB6wwRiT53PMzfe8B5jsKZ8DHO9mmgtc5xkFMQY44vMne8gSkc6ejxHAr4FnPKdc8R57/op+AVhvjPmzz6m5OL+88Xx8z+e4f95n20+EG3lK/DpOt0olTiv1h8CrwFpgjec/oJvP9ffh/JbfiGe0QKj9a+SeY4B/4PzyWgGc4/Z79hx/Cbi5getdec/ABOBrnBEeS4GRnmsFeNpzz2uBUbbj99P93o4z8mMT8DCeGesueo8n4HSnrAFWef5dBKQBn+P8wv4MSPX3+6xT/5VSyiVCpstFKaXUyWlCV0opl9CErpRSLqEJXSmlXEITulJKuYQmdKWUcglN6Eop5RL/DydUjuWOKCOvAAAAAElFTkSuQmCC\n" }, "metadata": { "needs_background": "light" } } ], "source": [ "variables['score'].plot()" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "output_type": "display_data", "data": { "text/plain": "
", "image/svg+xml": "\n\n\n \n \n \n \n 2021-06-24T19:40:46.110367\n image/svg+xml\n \n \n Matplotlib v3.4.2, https://matplotlib.org/\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n", "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAD4CAYAAAD8Zh1EAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAAAkE0lEQVR4nO3de3hV9Z3v8fc390AuIAGEBAlIUJSARoqgghStR50p1tGKvdunp7a2taeX8Uy1HbW2fVqnlzmdKbXN6bROZ1qp7RyVtlTbUSuioEZF7iByDXIJEQIhhNx+54+1yd47JGQn2Xuvvdf+vJ6Hp7/f2it7f13d+bL4rt/FnHOIiEj6y/I7ABERiQ8ldBGRgFBCFxEJCCV0EZGAUEIXEQmIHB8/W8NrREQGzvp6QXfoIiIBoYQuIhIQSugiIgGhhC4iEhBK6CIiAaGELiISEP0mdDP7uZkdNLP1fbxuZvYvZrbNzNaaWU38wxQRkf7EMg79YeBHwC/7eP06oCr051LgodD/xt2x1nbW1Tcl4q3T2oXjSykdlut3GJJqjjfCwQ2gFVVTU8UsyBse17fsN6E751aYWeUZTrkB+KXz1uFdbWYjzGycc25fvII8ZXvDcT74s5fi/bZpryA3i4c/Pps5k0f5HYqkgtajsPKfYfWPoaPV72ikL599BUZPjetbxqOGXg7siejXh46dxsxuN7M6M6urra2Nw0cLQGt7F7f/so7tDc1+hyJ+6uyAul/Av9bAyh8omWegpE79d87VAqcy+YD/HTg8P4e5ugvt1nj8JFsPeEn8aGsH//OXdTz+2cspKVD5JeNsexr+/DU4uDH6eOk5MHKiPzHJmeUWxv0tLZYdi0Illz8456b38tpPgb865x4J9bcAC2IouaiwFwfr6pu4+ScvcrKjC4Arp47m57e9i+ysPpd7kCA5uMlL5Nv+O/p4STlcfT9MvxmyNJgtYBK6lssy4KOh0S5zgKZE1M+ld9UVpXz3/TO7+89tbeDBJzf7GJEkRXMD/OGL8NBl0ck8dzgs/Bp8rg5m3KJknmH6LbmY2SPAAqDMzOqB+4BcAOfcT4DlwPXANqAF+HiigpXeLZo5ni37j7Lk2bcAqF2xnfPGFnPTJRU+RyZx194KLz0EK74PbcfCxy0LLv4wvPtrUDzWv/jEVzGVXBJEJZc46upyfOo/X+UvGw8AkJedxbI7L+f8s0t8jkzi5sRh+MX1p9fJJy+Aa74FZ59WEZVg0vK5QZeVZfzz4ouYOrYIgLbOLn61erfPUUlcPfPN6GReNhU++Fv4yONK5gIooQdKUX4O9733wu7+ym2HfIxG4mrfWqj7ebh/9f1wx4sw9RowPQAXjxJ6wMyqHElBrvd/645Dx9nzTovPEcmQOQfL7wLnjWTi3IVw+RcgW8NTJZoSesDk52RHzRh9/k3dpae9tY/CntVeOysXrvsn3ZVLr5TQA2he1eju9vNvNvgYiQxZ61H4yz+G+3M/A2VV/sUjKU0JPYDmV5V1t1/YdoiOzi4fo5Ehee5BaPZGLlE8Dubf5W88ktKU0ANoypgizi4pALwlAdbu1QqVaengZnjpJ+H+Nd+E/GL/4pGUp4QeQGbGvIi79BVbVXZJO87Bn/43dHV4/YmXw/Sb/I1JUp4SekDNmxpZR9eD0bSz8QnY8ZzXtiw9CJWYKKEH1BVTyrp//9fsOULTiXZ/A5LYtbXAU18N99/1SU0ckpgooQfUWcPzqC4vBaCzy7HqrUafI5KYrfwBHK332sPK4N33+BuPpA0l9ACLrKNr+GKaaHwLXvhhuH/1/VA4wq9oJM0ooQdY9Hh01dHTwlP3QGeb1y6/BC76kL/xSFpRQg+wmnNGMiwvG4Dd77Swq/G4zxHJGW15ErY+GeoYXP9drWcuA6JvS4Dl5WRFbdm3Qnfpqau9FZ78Srhf8xHvDl1kAJTQAy6qjq7x6Klr1Y/g8A6vXVAKV93nbzySlpTQAy5yPPqqtxpp1zIAqefIHljxvXB/4T/C8LK+zxfpgxJ6wE0uG075CG938WMnO3hjzxF/A5LT/flr0HHCa4+thku0i6MMjhJ6wPVcBkCjXVLM26/DxsfD/ev/CbL73epXpFdK6Bng0slndbc37TvqYyRymjWPhNsX3ggTL/MvFkl7SugZoGpMeIW+bQebfYxEonR2wIb/F+5fcptvoUgwKKFngHNHF3Wv67Kz8TgnOzr9DUg82/8Kx0Mjj4rOhsp5voYj6U8JPQMU5mUzYeQwALqct9eopIB1j4bb1TdDVrZ/sUggKKFniKoxRd3tNw+o7OK7tuOw6Q/hfvX7/YtFAkMJPUNMGRuR0FVH99+WP0F76F9KZVNh3Ex/45FAUELPENEPRo/5GIkAsDay3HKLNq+QuFBCzxAquaSQ44fgrafD/eqb/YtFAkUJPUOcG5HQdxw6riUA/LThsfBeoRWz4axJ/sYjgaGEniGK8nO6lwDo6HJaStdPkeWWGbf4F4cEjhJ6Bpmisov/3tkB9S97bcv2ZoeKxIkSegaJqqNrpIs/1v0u3J5ytVZVlLiKKaGb2bVmtsXMtpnZV3p5/Rwze9bMXjeztWZ2ffxDlaGq0tBFfzkXPZlI5RaJs34TupllA0uA64ALgA+Y2QU9Tvsa8Khz7mLgVuDH8Q5Uhm5KxNDFNw9o6GLS7XsDDm312rnD4bzr/I1HAieWO/TZwDbn3HbnXBuwFLihxzkOKAm1S4G34xeixEtkDX37oeN0aKRLcq37bbg97W8hb7h/sUggxZLQy4E9Ef360LFI9wMfNrN6YDlwZ29vZGa3m1mdmdXV1tYOIlwZitLCXMaW5APQ1tHFnsMnfI4og3R1RtfPq1VukfiL10r6HwAeds5938zmAv9hZtOdc1G3gM65WuBUJndx+mwZgKoxxRw4ehLwyi6TynSXmBQ7n4fm/V57+GiYvMDXcCSYYrlD3wtMiOhXhI5F+gTwKIBzbhVQAOjxfQqaopEu/ogce37h32lXIkmIWBL6K0CVmU0yszy8h57LepyzG7gKwMym4SV0bTGfgqJGuujBaHK0n4CNEb8yGt0iCdJvQnfOdQCfA54CNuGNZtlgZg+Y2aLQaV8GPmlmbwCPALc551RSSUGRi3TpDj1Jtj4JbaG/PEdOgvJL/I1HAiumf/c555bjPeyMPHZvRHsjcHl8Q5NEiJxctO1gM51djuwsrfSXUGsjRrfM0MqKkjiaKZphRg7Po6woD4CTHV3s1UiXxGp5B978c7iv0S2SQEroGSj6wajq6Am18Qnoavfa42ugbIq/8UigKaFnINXRk2hdj3KLSAIpoWeg6JEuSugJc2QP7HrBa1uWN1xRJIGU0DPQlKgHoyq5JMz6iJmhkxdA8VjfQpHMoISegXqWXDTCNEEiR7foYagkgRJ6BiorymPEsFwAWto6ebup1eeIAmj/eji4wWvnFHqLcYkkmBJ6BjKzHptGq+wSd5Hrnp93HeQX932uSJwooWeoyLXRt2mkS3x1dcG6/wr3NbpFkkQJPUNN1UiXxKl/BY7We+3CkXDuVf7GIxlDCT1DVY4KL5tbf6TFx0gCaMdz4fZ5fwM5ef7FIhlFCT1DjR9R2N1++4geisbVjhXh9uQr/YtDMo4SeoYaP6Kgu733yAkNXYyX9lbY83K4XznPv1gk4yihZ6jiglyKC7zFNts6umg83uZzRAFR/zJ0ejtCMaoKSsb5G49kFCX0DFYeVXbRqotxseP5cHuS7s4luZTQM9h4JfT42xmR0FVukSRTQs9g0XV0PRgdsrYWqK8L95XQJcmU0DOY7tDjbM/q8Nrno6dB0Wh/45GMo4SewVRDjzPVz8VnSugZTHfocab6ufhMCT2DRd6hq4Y+RCePwd7XQh2Dyit8DUcykxJ6BhtTnE92lrcD/aHmk7S2d/ocURrbvRpc6PqNnQ7DzvI3HslISugZLCc7i7NLwiNd9mtd9MGLnO6v+rn4RAk9w0UOXVQdfQhUP5cUoISe4cZH1dGV0AeltQn2veG1LQsmXuZvPJKxlNAznFZdjINdL4Lr8trjZkLhCF/DkcylhJ7hNHQxDiLr5yq3iI+U0DNceWQNvUkJfVCiJhTN9y8OyXhK6BlONfQhankHDqzz2pYN58zxNx7JaEroGa5nyUUbXQzQzpXhdnkN5Bf3fa5IgsWU0M3sWjPbYmbbzOwrfZxzi5ltNLMNZvbr+IYpiVJSkEtxvrfRRWt7F4db2n2OKM1ouKKkkH4TupllA0uA64ALgA+Y2QU9zqkC7gYud85dCHwh/qFKokSVXQ6r7DIgWpBLUkgsd+izgW3Oue3OuTZgKXBDj3M+CSxxzh0GcM4djG+Ykkg99xeVGDU3QMMmr52VCxNUPxd/xZLQy4E9Ef360LFIU4GpZvaCma02s2t7eyMzu93M6sysrra2dnARS9xp6OIgRZZbKmZB3jD/YhEBcuL4PlXAAqACWGFm1c65I5EnOedqgVOZXE/fUoQS+iCpfi4pJpY79L3AhIh+RehYpHpgmXOu3Tm3A9iKl+AlDURtdKGx6LFT/VxSTCwJ/RWgyswmmVkecCuwrMc5j+PdnWNmZXglmO3xC1MSabzWRR+4o/ug8U2vnZ0PFbP9jUeEGEouzrkOM/sc8BSQDfzcObfBzB4A6pxzy0KvXWNmG4FO4C7nXGMiA5f40YqLgxA5/nzCbMgt6PtcGbD29nbq6+tpbc3cG4yCggIqKirIzc2N+WdiqqE755YDy3scuzei7YAvhf5ImhlbUkCWQZeDhmMnOdnRSX5Ott9hpbadWr8lkerr6ykuLqayshIz8zucpHPO0djYSH19PZMmTYr55zRTVMjNzmKsNroYGNXPE6q1tZVRo0ZlZDIHMDNGjRo14H+hKKELoDVdBuTIHji8w2vnFEL5Jf7GE1CZmsxPGcx/vxK6AFoXfUAihyueMwdy8v2LRRLmwIEDfPCDH2Ty5MlccsklzJ07l8cee2zI77tgwQLq6uriEOHplNAF0IPRAVG5JfCcc7zvfe9j/vz5bN++nVdffZWlS5dSX1+fsM/s7Bz6Ju1K6AL0GIuuhN4353pMKNL650H0zDPPkJeXx6c//enuYxMnTuTOO++ktbWVj3/841RXV3PxxRfz7LPPAvR5/MSJE9x6661MmzaNG2+8kRMnwr9fRUVFfPnLX2bmzJmsWrVqyHHHa6aopLnxpaqhx+TwTmgKrYSRVwTjL/IzmoxQ+ZU/Juy9d37nb3o9vmHDBmpqanp9bcmSJZgZ69atY/PmzVxzzTVs3bq1z+MPPfQQw4YNY9OmTaxduzbqfY8fP86ll17K97///bj89yihCwDlI3WHHpOo+vlcyI59jLCkr89+9rOsXLmSvLw8KioquPPOOwE4//zzmThxIlu3bmXlypW9Hl+xYgWf//znAZgxYwYzZszoft/s7GxuuummuMWpkosApz8U1UYXfVD9PCNceOGFvPbaa939JUuW8PTTT9PQ0BDXzykoKCA7O35zPnSHLgCUFORQlJ9D88kOTrR3cqSlnZHD8/wOK7WcVj9XQk+GvsoiibRw4ULuueceHnroIe644w4AWlpaAJg3bx6/+tWvWLhwIVu3bmX37t2cd955fR6fP38+v/71r1m4cCHr169n7dq1CYtbd+gCeGNetS56PxrfgmP7vHZ+KYyb6W88kjBmxuOPP85zzz3HpEmTmD17Nh/72Md48MEH+cxnPkNXVxfV1dUsXryYhx9+mPz8/D6P33HHHTQ3NzNt2jTuvfdeLrkkcfMWdIcu3caPKGTrgWbAq6NPLy/1OaIUEzndf+JlkKXlEYJs3LhxLF26tNfXfvGLX5x2rKCgoNfjhYWFfb5Pc3Pz0ILsQXfo0k3rovdD9XNJcUro0i16XXTNFo3iXPQKi6qfSwpSQpduUTV0bRYdrWELHA9tlVs4EsZO9zcekV4ooUu3yMlF2rmoh8jRLRMvhyz96kjq0bdSuqmGfgY7Ih6ITtJ0f0lNSujS7ezSAk6t2Hnw2EnaOrr8DShVdHWpfi5pQQlduuVmZzG22KujOwcHjurBKAAHN8CJd7z2sDIYM83feCQpsrOzueiii5g5cyY1NTW8+OKLA/r5+++/n+9973sJiq53SugSRZOLetFzuGKGb7yQKQoLC1mzZg1vvPEG3/72t7n77rvj8r4dHR1xeZ/eKKFLFNXRe6Hp/hnv6NGjjBw5EvAmA1111VXU1NRQXV3NE0880X3et771LaZOncoVV1zBli1buo8vWLCAL3zhC8yaNYsf/vCHCYtTM0UlitZF76GrE3a+EO7rgWjy3Z/AGcv3N/X50okTJ7joootobW1l3759PPPMM4A3I/Sxxx6jpKSEQ4cOMWfOHBYtWsRrr73G0qVLWbNmDR0dHdTU1ERN829ra0vYTkWnKKFLlOi9RVVDZ/9aOBn6pS86G0ZN8TceSZpTJReAVatW8dGPfpT169fjnOOee+5hxYoVZGVlsXfvXg4cOMDzzz/PjTfeyLBhwwBYtGhR1PstXrw44TEroUsUlVx6UP1cgLlz53Lo0CEaGhpYvnw5DQ0NvPrqq+Tm5lJZWUlra/83P8OHD094nEroEkV7i/ag+rn/zlAWSZbNmzfT2dnJqFGjaGpqYsyYMeTm5vLss8+ya9cuAObPn89tt93G3XffTUdHB7///e/51Kc+ldQ4ldAlSvmI6K3onHNYpt6VdnbAroh9HrUgV0Y5VUMHb9Pof//3fyc7O5sPfehDvPe976W6uppZs2Zx/vnnA1BTU8PixYuZOXMmY8aM4V3velfSYzYfd6bRljgpyDnHhfc9RUubtwP5mnvfw4hhGbrRRX0d/Owqr11SAV9cr5JLkmzatIlp0zTev4/r0OeXUMMWJYq30YU2jAZ6TPdX/VxSnxK6nKbn/qIZS/VzSTNK6HKacj0YhY422L063Ff9XNKAErqcJmoZ3UxN6G+/Bu3epsCMmAgjzvE3ngzk4/O9lDCY/34ldDmNauhouzmfFRQU0NjYmLFJ3TlHY2MjBQUF/Z8cIaZhi2Z2LfBDIBv4mXPuO32cdxPwO+BdzrnEznGVhCkfqTv0qA2hKzXdP9kqKiqor6+noaHB71B8U1BQQEVFxYB+pt+EbmbZwBLgPUA98IqZLXPObexxXjHwv4CXBhSBpJzyTH8o2t4Ke14O93WHnnS5ublMmjTJ7zDSTiwll9nANufcdudcG7AUuKGX874BPAhkYAYIlrEl4Y0uDhxrpb0zwza6qH8FOkJf47POhZLx/sYjEqNYEno5sCeiXx861s3MaoAJzrk/numNzOx2M6szs7ra2toBByvJkZeTxZjifMDb6GJ/U4b9Hb1T9XNJT0Oe+m9mWcAPgNv6O9c5VwucyuSZ+bQjTYwfUciBoycBr44+4axhPkeURDs0/lzSUyx36HuBCRH9itCxU4qB6cBfzWwnMAdYZmaz4hWkJF/U5KKmDHow2tbilVxOUUKXNBJLQn8FqDKzSWaWB9wKLDv1onOuyTlX5pyrdM5VAquBRRrlkt4y9sHonpegq91rjz4fisf6G4/IAPSb0J1zHcDngKeATcCjzrkNZvaAmS06809LuhpfmqF7i2q6v6SxmGrozrnlwPIex+7t49wFQw9L/JaxG11oQpGkMc0UlV5lZEI/2exN+T9l4hX+xSIyCEro0quojS4On8iMKdi7V0NXh9ceOx2Gj/I3HpEBUkKXXo0YlkthbjYAx9s6Odra4XNESRA13V/lFkk/SujSK2+jiwxbRlf1c0lzSujSp4yqo7c2wb41oY7BxMv8jEZkUJTQpU/lmZTQd60CF1qzZtwMKBzpbzwig6CELn2KXhc94JOLNP5cAkAJXfqUUSWXqA2htf65pCcldOlTxjwUbXkH9q/z2pYN58z1Nx6RQVJClz5lTA191wt0L/45/iIoKPEzGpFBU0KXPp0dsZ7L/qOtdAR1owstlysBoYQufcrPyWZ0aKOLLgcHjp30OaIE0YYWEhBK6HJGgX8wevwQHAxtj5uVAxPm+BuPyBAoocsZlQf9wWjk3Xn5JZBf5F8sIkOkhC5nNL40cix6ABO66ucSIErockaBL7mofi4BooQuZ1Q+MsBb0R3bD4e2eu3sPJhwqb/xiAyRErqcUeRY9J2Nx32MJAE2/yHcrpgNuYV9nyuSBpTQ5Ywmjx7e3d7V2EJbR4DGoq/9bbh94ft8C0MkXpTQ5YyG5eVQESq7dHa54NylH94Je1Z7bcuGC2/0NRyReFBCl35VjQkP5XvzQLOPkcTRuoi78ylXwfAy/2IRiRMldOlX1dji7vabB4/5GEmcOBddbqm+xb9YROJICV36NSXyDv1gAO7Q96+FQ1u8du5wOP96f+MRiRMldOlXZMllWxBKLmsfDbfP/xvIG973uSJpRAld+hV5h779UHN6r7rY1Qnr/yvcn6FyiwSHErr0q7ggl/GhpXTbOx273mnxOaIh2LkSju3z2sPKYPK7/Y1HJI6U0CUmUyIfjKZz2WVdRLll+t9Bdo5/sYjEmRK6xCSqjp6uI13aW2HjsnBfo1skYJTQJSZVQRjpsvVJOHnUa4+cBBWz/I1HJM6U0CUmVWMDMLkocjJR9fvBzL9YRBIgpoRuZtea2RYz22ZmX+nl9S+Z2UYzW2tmT5vZxPiHKn6aMjpcQ3+roZnOLudjNINw4jC8+edwX6NbJID6Tehmlg0sAa4DLgA+YGYX9DjtdWCWc24G8Dvgn+IdqPirdFguY0L7i57s6KL+cJqNdNn4BHS2ee3xF0NZlb/xiCRALHfos4Ftzrntzrk2YClwQ+QJzrlnnXOnfsNXAxXxDVNSQWTZZWu6lV001V8yQCwJvRzYE9GvDx3ryyeAP/X2gpndbmZ1ZlZXW1sbe5SSEqrGpOmaLk31sGul17YsmH6Tv/GIJEhcB+Ga2YeBWcCVvb3unKsFTmXyNCvCypR0XQJg3e/C7UlXQvFY/2IRSaBYEvpeYEJEvyJ0LIqZXQ18FbjSOXcyPuFJKknboYuRo1v0MFQCLJaSyytAlZlNMrM84FZgWeQJZnYx8FNgkXPuYPzDlFQQuYzutoPNdKXDSJcDG+DAeq+dUwDn/62/8YgkUL8J3TnXAXwOeArYBDzqnNtgZg+Y2aLQad8FioDfmtkaM1vWx9tJGjtreB6jhucBcKK9k71HTvgcUQwiV1Y87zooKPEvFpEEi6mG7pxbDizvcezeiPbVcY5LUtSUMUU07ngH8O7SJ5w1zOeIzqCrK7p+rtEtEnCaKSoDEjVjNNVHuuxeBUfrvXbhSJii+w4JNiV0GZCooYupPtIlcmXFC94HOXm+hSKSDEroMiBpM9Klow02PB7ua3SLZAAldBmQKWMjl9FtxrkUHemy7S/QesRrl06ACXN8DUckGZTQZUBGF+VTWpgLQPPJDvYfbfU5oj5Ejm6pvhmy9FWX4NO3XAbEzKLLLqlYR29tgi0Rq0/MWOxfLCJJpIQuAxY90iUFE/qm30NnaLLy2GoYM83feESSRAldBixypEtKbkcXWW6Z8X7/4hBJMiV0GbCUXkb3yG7YsSLUMZh+s6/hiCSTEroM2HkRa7qs39tEa3unj9H08Od/pHshz8oroPRMKz2LBIsSugzYmJICzh09HPB2L3o5tBSA77b/FTY+Hu6/+x6/IhHxhRK6DMr8qaO728+/2eBjJCGd7fCnfwj3q2+BiZf5F4+ID5TQZVDmV0Um9EM+RhLyci00bPbaeUXwngf8jUfEB0roMiiXTj6L3GwDYPP+Yxz0c4LRsQPw7LfD/Sv/AUrG+RePiE+U0GVQhuXlMGviWd19X+/S//s+aAsNnyybCpd+2r9YRHykhC6DNm9qWXfbtzr67pfgjUfC/ese1KqKkrGU0GXQIuvoK7cdSv6WdF2dsPzvw/1pi+DchcmNQSSFKKHLoF0wroSzQlvSHWpuY+O+o8kN4NWHYf9ar51TCP/jW8n9fJEUo4Qug5aVZVwxJbLsksQ6ess78Mw3wv15X4IR5yTv80VSkBK6DMm8Kp/q6E8/ACcOe+2RlXDZ55P32SIpSgldhmReRB29budhWto6Ev+hb7/ulVtOufY7kFuQ+M8VSXFK6DIkZ5cWMDW0WFdbZxcvbU/wMgBdXbD8LrrXa6m6BqZem9jPFEkTSugyZEmdNfrGI1D/itfOzvPuzs0S+5kiaUIJXYZsXrLWdWlt8iYRnXLZnTDq3MR9nkiaUUKXIZtdeRZ5Od5X6c2DzexrOpGYD/rrd+B46C+MknKY9+XEfI5ImlJClyErzMtmdmWClwE4sBFe+mm4f803IW94/D9HJI0poUtcRA9fjHNCP3EY/vglcKGNNCrnwYU3xvczRAJACV3iInL44lMb9vP67sNDf9POdlj9E/iXi2H3Ku+YZcP139WDUJFeKKFLXEwbV8z08hIA2jq6+NR/vMr+pkEuqescbF4OP54DT/5DeAIRwPy/hzHT4hCxSPCYc0leUCnMtw+WxNjd2MKiJSs50tIOwMyKUn7zqbkU5GbH/ib73oCnvgo7n48+PrISrv46XHCD7s4l0/X5C6CELnH14luH+Mi/vUxnaOXFGy4az/9ZfBHWXxI+ug+e+Sas+RVRX438UrjyLph9O+TkJy5wkfTR5y9TTCUXM7vWzLaY2TYz+0ovr+eb2W9Cr79kZpVDCFbS2GXnlnH/ey/o7j+x5m1+8tz2vn+g7bg3HPFfa2DNf9KdzC3bS+Kff90bb65kLtKvfu/QzSwb2Aq8B6gHXgE+4JzbGHHOZ4AZzrlPm9mtwI3OucX9fPbA79CP7IYXfjjgH5Pkcg5e2tHI1gPNgFchOXf0cLKzsk478fyjKyltj56MtLnkcp4a/1kOFUxMVsgiSXfnVVMYUzyoNYj6vEPPieGHZwPbnHPbAcxsKXADsDHinBuA+0Pt3wE/MjNz8a7nHG+AV34W17eU+DNgDjAn8tsVwxIvG7sm8s2OD/HiwelwEGBXQuITSQUfu6ySMcXxfc9YSi7lwJ6Ifn3oWK/nOOc6gCZgVM83MrPbzazOzOpqa2sHF7EEzkE3grvab+dv277Fi13T/Q5HJG3FcoceN865WuBUJh/43XvpBLj+e3GNSRKr+WQ7m/cdo7OPf6ydzC2lfvSVVOcMozrJsYn4aXRR/J8LxZLQ9wITIvoVoWO9nVNvZjlAKdAYlwgjFY2B2Z+M+9tK4hQBs/wOQiRDxFJyeQWoMrNJZpYH3Aos63HOMuBjofbNwDNxr5+LiMgZ9XuH7pzrMLPPAU8B2cDPnXMbzOwBoM45twz4N+A/zGwb3uOvWxMZtIiInE4Ti0RE0svQJhaJiEjqU0IXEQkIJXQRkYBQQhcRCQjfHop+/etffxIo6/fEFNbc3FxWVFSU4G3u04euR5iuRTRdj2hDvB6H7rvvvmt7e8HPUS5pz8zqnHOaNxOi6xGmaxFN1yNaoq6HSi4iIgGhhC4iEhBK6EOjJSOj6XqE6VpE0/WIlpDroRq6iEhA6A5dRCQglNBFRAJCCT0GMWyS/SUz22hma83saTML7GaY/V2LiPNuMjNnZoEeqhbL9TCzW0Lfjw1m9utkx5hMMfyunGNmz5rZ66Hfl+v9iDMZzOznZnbQzNb38bqZ2b+ErtVaM6sZ8oc65/TnDH/wlgx+C5gM5AFvABf0OOfdwLBQ+w7gN37H7de1CJ1XDKwAVgOz/I7b5+9GFfA6MDLUH+N33D5fj1rgjlD7AmCn33En8HrMB2qA9X28fj3wJ8Lb8L401M/UHXr/ujfJds61Aac2ye7mnHvWOdcS6q7G29UpiPq9FiHfAB4EWpMZnA9iuR6fBJY45w4DOOcOJjnGZIrlejigJNQuBd5OYnxJ5ZxbwZm3R78B+KXzrAZGmNm4oXymEnr/YtkkO9In8P7WDaJ+r0Xon40TnHN/TGZgPonluzEVmGpmL5jZajPrdcp2QMRyPe4HPmxm9cBy4M7khJaSBppb+pXUTaKDzsw+jLeF5pV+x+IHM8sCfgDc5nMoqSQHr+yyAO9fbivMrNo5d8TPoHz0AeBh59z3zWwu3k5n051zXX4HFgS6Q+9fLJtkY2ZXA18FFjnnTiYptmTr71oUA9OBv5rZTry64LIAPxiN5btRDyxzzrU753YAW/ESfBDFcj0+ATwK4JxbBRSQ5ov0DUFMuWUglND71+8m2WZ2MfBTvGQe5BrpGa+Fc67JOVfmnKt0zlXiPU9Y5Jyr8yfchItlA/XH8e7OMbMyvBLM9iTGmEyxXI/dwFUAZjYNL6E3JDXK1LEM+GhotMscoMk5t28ob6iSSz9cbJtkfxcoAn5rZgC7nXOLfAs6QWK8FhkjxuvxFHCNmW0EOoG7nHON/kWdODFejy8D/9fMvoj3gPQ2FxryETRm9gjeX+ZloWcG9wG5AM65n+A9Q7ge2Aa0AB8f8mcG9FqKiGQclVxERAJCCV1EJCCU0EVEAkIJXUQkIJTQRUQCQgldRCQglNBFRALi/wNPYDqpyoR/ggAAAABJRU5ErkJggg==\n" }, "metadata": { "needs_background": "light" } } ], "source": [ "variables['ratio'].plot()" ] }, { "source": [ "variables['credit'].plot()" ], "cell_type": "code", "metadata": {}, "execution_count": 5, "outputs": [ { "output_type": "display_data", "data": { "text/plain": "
", "image/svg+xml": "\n\n\n \n \n \n \n 2021-06-24T19:40:46.312635\n image/svg+xml\n \n \n Matplotlib v3.4.2, https://matplotlib.org/\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n", "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAD4CAYAAAD8Zh1EAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAAAnqklEQVR4nO3deXhV9b3v8feXDIQhTGFSwhAUZZApTAkIetBabXtQOuFUh1oGtWp7e8+96r3n1Paec0972qdXba0ShzqUitZWxVq1VinIKGGQGYQwJUwBZCaQ4Xf/WJvsnTBkYO+svdf+vJ6nT9dv752dTwC/LNZe67PMOYeIiCS+Zn4HEBGR6NBAFxEJCA10EZGA0EAXEQkIDXQRkYBI9fF76/QaEZGGs3M9oT10EZGA0EAXEQkIDXQRkYDQQBcRCQgNdBGRgNBAFxEJiDoHupm9YGZ7zWz1OZ43M3vSzDaZ2Uozy41+TBERqUt9zkN/EfgN8PI5nr8B6BP63yjg6dD/R92RsnJWFR+KxVvHvc5tMri0c2u/Y4hEj3NQuh6O7vU7iT+yh0N6q6i+ZZ0D3Tk318x6neclNwIvO6+Hd5GZtTOzi5xzu6IV8rSi0mPc+tziaL9twvi/Ewdy66gefscQiY6Fv4G//W+/U/jn/iXQ6bKovmU0jqF3A3ZErItDj53BzKaYWaGZFRYUFEThWyeXX324kbLySr9jiFy4ssMw5xd+pwicJr303zlXAJye5A2+9L9V81Tye2dFN1QCWLPzEIfLKth39CR/XlaivXRJfEtfhJOhw6cts6Bzf1/j+CKtRdTfMhoDvQToHrHODj0WdZd2bs2rU/Ji8dZx7blPivj3d9cB8OwnRUwa0Z2UZuescxCJbxWnYNFvw+trfgzD7vQvT4BE45DLLOCO0NkuecChWBw/T2Y3j+xBZob3d++Wfcf4cO1unxOJXIBVf4QjoRHRugsMmuRvngCpz2mLrwILgcvNrNjM7jGzaWY2LfSSvwJFwCbgWeC+mKVNUq2bp/KdvJ7V66fnFKF7wUpCqqqCBU+G16OmQVqGf3kCxnwcDJpIDbD3SBlX/nw2pyqqAHhtSh6jkvDzBElwG96HV0N75Omt4YdroEU7XyMlINXnJrrOmRl8Ize7ev3MnM0+phFppPlPhLeH3aVhHmUa6Alk8tgcLPR38+wNpazffdjfQCINseNT2L7A226WCnk6OhttGugJpHen1ny5f9fqdcHcIh/TiDRQ5N75wG9D27NeriIXQAM9wUy9qnf19qwVO9l58ISPaUTqqXQjrH83vB7zoH9ZAkwDPcEM7dGeUTkdAKiocjw/b4vPiUTqYeGvqT4P4rLroXM/X+MElQZ6App21SXV269+up1Dx8t9TCNShyO74bOZ4fWYH/gWJeg00BPQ1Zd34vIumQAcP1XJK4u2+htI5HwWPQ2Vp7zt7JHQI/mu9m4qGugJyMyYMi58LP3FBVtV2iXxqewwFL4QXo95iOpTtSTqNNAT1IQhF3NxW+8Ku31HT/GnZcU+JxI5i6UvwsnQ6bVZfeDyr/gaJ+g00BNUWkozvntlTvX62blFVFbp4luJIxUna5ZwjXkQmmnkxJJ+dRPYzSN70CZU2rV1/3H+tkalXRJHVMLV5DTQE1jr5ql8Jz9c2vXMnM0q7ZL4UFUF8yNKuPLuhdTm/uVJEhroCe6u0Tmkp3q/jZ8VH2JR0QGfE4kAn38A+zZ42+mZMOxuf/MkCQ30BNcpsznfHKbSLokz8x4Pbw+/WyVcTUQDPQAmj+1dfSbYnI2lrNul0i7x0fZFsGORt90szTvcIk1CAz0Acjq24voBKu2SOBF57HzQJGhzsX9ZkowGekBMjagDmPXZToq/OO5jGklapRtgQ0QJ1+gH/MuShDTQA2JI93bk9fZKuyqrHC/M2+pvIElOkbeXu+wG6NzXvyxJSAM9QCL30mcu2c7B46d8TCNJ5/BO+Oy18PrKH/gWJVlpoAfI1Zd1om/XcGnXywu3+ZxIksqip6Eq1PzZfZRKuHyggR4gZlbjBhgvqbRLmkrZISj8XXg95iH/siQxDfSA+dqgi+nWrgUA+4+d4o2lKu2SJlD4Ozh1xNvueJl3/FyanAZ6wKSlNOOeyNKuT1TaJTFWcdI73HLaaJVw+UW/6gE0aUR32rZIA2Db/uO8v1qlXRJDK1+Do6E/Y5kXwaBv+5sniWmgB1Cr5qncodIuaQoq4YorGugBdefoXjQPlXatKjnEwqL9PieSQNr4Huz/3Ntu3gaG3eVrnGSngR5QHVs351vDI0u7VAcgUebcmSVcGW19iyMa6IE2eWxvmoVKu+ZuLGXtTpV2SRRtXwTFn3rbKekwSiVcftNAD7CeWa244YqLqtcFc1WtK1E0/4nw9qBJ0Oaic79WmoQGesBFXmj0zspdKu2S6Ni73jt+ftroB/3LItU00ANuUHY7Rl+SBXilXc99ssXnRBIIC34d3r78q9DpMv+ySLV6DXQzu97MNpjZJjN7+CzP9zCz2Wa23MxWmtlXoh9VGiuytOu1JTv44phKu+QCHN7pnXt+mi7zjxt1DnQzSwGeAm4A+gO3mFn/Wi/738DrzrmhwM3Ab6MdVBpvXJ+O1aVdJ8oreWWRSrvkAkSWcPXIhx6j/M0j1eqzhz4S2OScK3LOnQJmAjfWeo0D2oS22wI7oxdRLpSZMS1iL/3FBVs5cUqlXdIIJw6qhCuO1WegdwN2RKyLQ49Fegy43cyKgb8CZ71NiZlNMbNCMyssKChoRFxprK8Ouqi6tOvAsVO8sUylXdIISyNLuC6HPl/2N4/UEK0PRW8BXnTOZQNfAV4xszPe2zlX4Jwb7pwbPmXKlCh9a6mPtJRmfG9sRGnX3CIqKqt8TCQJp3YJ1xiVcMWb+vxulADdI9bZocci3QO8DuCcWwhkAB2jEVCiZ9KI7rRr6ZV2bT9wnPfXqLRLGuCzmXB0j7edeREM/Ja/eeQM9RnoS4A+ZpZjZul4H3rOqvWa7cA1AGbWD2+gl0YzqFy4lump3JEXLu2aPqdIpV1SP1VVNe8XmnefSrjiUJ0D3TlXAXwf+ABYh3c2yxoz+6mZTQi97EfAZDP7DHgVuMtpUsSlO2qXdm1WaZfUw4a/wv5N3rZKuOKW+Th3NfB98q9vra4+dXFsn468co9OO5PzcA6evy7c2zLmB/Cln/gaKcnZuZ7QJxpJ6Htjc6pLuz75fB9rdh7yN5DEt+0La5Zw5amEK15poCehnlmtuGFgZGmXqnXlPCJLuAbfDJld/csi56WBnqSmjguXdv1l5S52HFBpl5zF3nWw8f3QwlTCFec00JNU7dKu5+eptEvOIvL2cn2/Ch37+JdF6qSBnsSmqbRLzudQCax6PbzWZf5xTwM9iY3t05F+F3kVPCfKK3l5oUq7JMKi30JVhbfdYzR0H+lvHqmTBnoS80q7wsfSX1qo0i4JOXEQlr4YXmvvPCFooCe5rw6sVdq1dEcdXyFJofB5OHXU2+7UF/pc528eqRcN9CSXWqu0q+ATlXYlvfIyWPRMeD36AZVwJQj9LkmN0q4dB07w3mqVdiW1lTPh2F5vO/NiGPhtf/NIvWmgi1fald+rej197maVdiWrqsqa9wvNvw9S0/3LIw2igS4A3Jnfs7q0a3XJYeZvUmlXUqpRwtUWcu/0N480iAa6AJDVujnfHh6uvX9mzmYf04gvnIN5j4fXI74LGW3O+XKJPxroUm3y2N7VpV3zNu1jdYlKu5LKtgVQUuhtp6TDqGn+5pEG00CXaj2yWvKViNKu6SrtSi7zHw9vD75FJVwJSANdaoisA3h35U6VdiWLPWvg87+FFuadqigJRwNdariiW1uuvNS7HWyVg+c+0V56Uog8s0UlXAlLA13OMDWiDuC1wh3sP3rSxzQScwd3wKo/htdX/tC/LHJBNNDlDFde2pEBF3tnN5SVV6m0K+gWPR0u4eo5BrKH+5tHGk0DXc5gZkyNOJb+0sKtHD9V4WMiiZkTX6iEK0A00OWsvnJFV7p38Eq7Dh4v54+FxT4nkphY8jyUH/O2O/WDS7/kbx65IBroclapKc2YPDZ8LP1ZlXYFT/kJWBxRwjXmIZVwJTj97sk5fWtYd9qHSruKvzjBu6t2+ZxIouqzV+FYqbfdphtc8Q1/88gF00CXc2qRnsKdo3tVr6fPKVJpV1DULuHKUwlXEGigy3ndkd+LjDTvj8naXYeZt2mfz4kkKtb/BQ6ErjHIaAvDVMIVBBrocl4dWqVz84ge1evpc3ShUcJzDuY/EV6P+B40z/Qvj0SNBrrU6Z4rc0gJtXbN27SPVcUq7Upo2+ZDyVJvO6U5jJzqbx6JGg10qVP3Di35ao3SLlXrJrTIitwht0BmF9+iSHRpoEu9TBkXPoXxr6t2sX2/SrsS0u7VsOnD0MIgXyVcQaKBLvVyRbe2jO0TUdo1T8fSE1LkmS39/hk6XupfFom6eg10M7vezDaY2SYze/gcr/m2ma01szVm9ofoxpR4EFmt+7pKuxLPoWJY/UZ4rcv8A6fOgW5mKcBTwA1Af+AWM+tf6zV9gEeAMc65AcAPoh9V/Db6kiyu6BYu7XpJpV2JZeFvI0q4rlQJVwDVZw99JLDJOVfknDsFzARurPWaycBTzrkvAJxze6MbU+KBmTF1XHgv/WWVdiUOlXAlhfoM9G7Ajoh1ceixSJcBl5nZfDNbZGbXn+2NzGyKmRWaWWFBQUHjEouvbqhV2vX6kh11fIXEhSXPhUu4OveHPirhCqJofSiaCvQBrgZuAZ41s3a1X+ScK3DODXfODZ8yZUqUvrU0pTNLu7aotCvelZ+AxdPD6zEPgZl/eSRm6jPQS4DuEevs0GORioFZzrly59wWYCPegJcA+taw7nRo5fV+lBxUaVfcUwlX0qjPQF8C9DGzHDNLB24GZtV6zVt4e+eYWUe8QzA6ry2gWqSncGd+r+r1Myrtil+1S7jy74eUNP/ySEyl1vUC51yFmX0f+ABIAV5wzq0xs58Chc65WaHnrjOztUAl8C/Ouf2xDC7+uiO/J8/M2cyJ8krW7TrMJ5/vY9xlnfyOJbWteyeihKsd5MZ3CVd5eTnFxcWUlZX5HcV3GRkZZGdnk5ZW/7+Azcc9K+3SJbjHZq3hxQVbARhzaRYzvpfnbyCpyTl4djzsXOatx/53uOZf/c1Uhy1btpCZmUlWVhaWxMf5nXPs37+fI0eOkJOTU/vpc/7C6EpRabTI0q75m/azsvigv4Gkpq3zwsM8pTmMiv8SrrKysqQf5uCdIpyVldXgf6looEujde/Qkq8Niizt0scmcWX+4+HtIbdC686+RWmIZB/mpzXm10EDXS5IZGnXe6t2sW3/MR/TSLXdq2HT30MLg9Eq4WqIPXv2cOutt9K7d2+GDRtGfn4+b7755gW/79VXX01hYWEUEp6dBrpckAEX1yztevYT7aXHhQVPhrf7T4CsS879WqnBOcdNN93EuHHjKCoqYunSpcycOZPi4mK/o9VJA10u2L0RpV1/LCxmn0q7/HVwO6xSCVdjffzxx6SnpzNt2rTqx3r27MkDDzxAWVkZd999NwMHDmTo0KHMnj0b4JyPnzhxgptvvpl+/foxceJETpw4Uf2e77//Prm5uQwePJhrrrkmKtnrPG1RpC75l2QxsFtbVpUc4mRFFS8t2MqPrrvc71jJa9HT4Cq97V5jodswf/M0Uq+H343Ze2/92VfP+dyaNWvIzc0963NPPfUUZsaqVatYv3491113HRs3bjzn408//TQtW7Zk3bp1rFy5svp9S0tLmTx5MnPnziUnJ4cDBw5E5efSHrpcMDNj6lXhY+kvL9zGsZMq7fLF8QOw9KXweswPfIsSFPfffz+DBw9mxIgRzJs3j9tvvx2Avn370rNnTzZu3HjOx+fOnVv9+KBBgxg0aBAAixYtYty4cdWnJHbo0CEqWTXQJSquH9CVHh1aAnDoRDmvqbTLH0uejyjhGgCXRuef8slkwIABLFu2rHr91FNP8dFHH1FaWupjqvrRIReJitSUZkwe15t/fWs1AM/P28J38nuSlqJ9hiZTfgIWPxNej3kwoUu4zndYJJbGjx/Po48+ytNPP829994LwPHj3i0Xx44dy4wZMxg/fjwbN25k+/btXH755ed8fNy4cfzhD39g/PjxrF69mpUrVwKQl5fHfffdx5YtW6oPuURjL13/tUnUfGtYNlmRpV0rVdrVpFbMgOP7vO223VXC1UhmxltvvcWcOXPIyclh5MiR3Hnnnfz85z/nvvvuo6qqioEDBzJp0iRefPFFmjdvfs7H7733Xo4ePUq/fv34t3/7N4YN8z7P6NSpEwUFBXz9619n8ODBTJo0KTrZdem/RNOTH33Orz7cCEDfrpm899BYXSjSFKoq4de58MVWb339zyDvXl8jNca6devo16+f3zHixjl+PXTpvzSNO/J70iItBYD1u48w9/N9PidKEutmhYd5RjsY+h0/04hPNNAlqtq1TOfmkeH6/Gf+sdnHNEnCOZj3eHg9cjI0b+1bHPGPBrpEXWRp18IilXbF3Ja5sGuFt52aASPjv4RLYkMDXaIuu31L/jmytGuO6gBiav4T4e0ht0Fr9dInKw10iYmpEXUA763exdZ9Ku2Kid2rYPNH3rY18+5IJElLA11iot9FbbgqdAcjlXbFUOTeef8bVcKV5DTQJWYi6wD+uLSY0iMq7YqqL7bB6j+H16Mf9C9LgKSkpDBkyBAGDx5Mbm4uCxYsaNDXP/bYY/zyl7+MUbrz00CXmMnvncXg7LYAnAqVdkkULfptuIQrZxx0O3uhlDRMixYtWLFiBZ999hn/+Z//ySOPPOJ3pHrTQJeY8Uq7wocAXl64VaVd0XL8ACx7ObxWRW5MHD58mPbt2wNw9OhRrrnmGnJzcxk4cCBvv/129ev+4z/+g8suu4wrr7ySDRs2VD++adMmrr322uq9/c2bY3sar7pcJKa+PKArPbNasm3/cQ6XVfDqp9v53tjedX+hnN+nz0K51y9Cl4FwSQBLuB5rG8P3PnTOp06cOMGQIUMoKytj165dfPzxxwBkZGTw5ptv0qZNG/bt20deXh4TJkxg2bJlzJw5kxUrVlBRUUFubm71Jf633XYbDz/8MBMnTqSsrIyqqqrY/UxoD11iLKWZMTligL8wbwvllbH9Qx14p47Dp9PD6wQv4Yo3pw+5rF+/nvfff5877rgD5xzOOR599FEGDRrEtddeS0lJCXv27OGTTz5h4sSJtGzZkjZt2jBhwgQAjhw5QklJCRMnTgS8vxBatmwZ0+wa6BJz3xyWTcfWXmnXzkNlvPPZTp8TJbgVM+D4fm+7bQ8YMNHfPAGWn5/Pvn37KC0tZcaMGZSWlrJ06VJWrFhBly5dKCsr8ztiDTrkIjGXkZbCXaN78cu/eaVd0+cUMXFoN5V2NUZlBSz8TXidfz+kpPmXJ5bOc1ikqaxfv57KykqysrI4dOgQnTt3Ji0tjdmzZ7Nt2zYAxo0bx1133cUjjzxCRUUF77zzDlOnTiUzM5Ps7GzeeustbrrpJk6ePEllZWVM99K1hy5N4va8nrRM90q7Nuw5wj82xv/NAuLSurfDJVwt2kOuSrii7fQx9CFDhjBp0iReeuklUlJSuO222ygsLGTgwIG8/PLL9O3bF4Dc3FwmTZrE4MGDueGGGxgxYkT1e73yyis8+eSTDBo0iNGjR7N79+6YZld9rjSZn76zlhfmbwFgVE4HXpua73OiBOMcFFwFuz7z1lf9T/inR/3NFGWqz61J9bkSt+4Zm0NqqLRr8ZYDLN/+hc+JEsyWOeFhntoCRk7xN4/EHQ10aTLd2rVgwuCLq9cFc1UH0CCRFblDb4NWHX2LIvFJA12a1JSIOoD31+xmi0q76mfXZ1A029u2ZpD/fX/zSFzSQJcm1bdrG66+3Cvtcirtqr/5T4a3+98EHXJ8ixJrPn6uF1ca8+uggS5Nbuq4cB3AGyrtqtsXW2HNm+F1gC/zz8jIYP/+/Uk/1J1z7N+/n4yMjAZ9Xb3OQzez64EngBTgOefcz87xum8AbwAjnHOFDUoiSSOvdwcGd2/HZzsOcqqiihcXbOFfvtzX71jxa2FECVfvq+HiIX6mians7GyKi4spLdVprRkZGWRnZzfoa+o8bdHMUoCNwJeAYmAJcItzbm2t12UC7wLpwPfrMdCT+6/gJPfeql3cO2MZAG0yUlnwyDW0bq7r3M5wbD/8vwFQccJbf+dNuGS8v5nEbxd02uJIYJNzrsg5dwqYCdx4ltf9H+DnQHxdCytx6boBXemV5V0xd7isgpmfbvc5UZxa8mx4mHcdCL3/yd88EtfqM9C7ATsi1sWhx6qZWS7Q3Tn37vneyMymmFmhmRUWFBQ0OKwER0ozY/K48Bkvz6u060ynjsPiiBKu0Q+phEvO64I/FDWzZsCvgB/V9VrnXIFzbrhzbviUKbooItl9Izdc2rVLpV1nWjEDThzwttuphEvqVp+BXgJ0j1hnhx47LRO4AviHmW0F8oBZZjY8WiElmDLSUrh7TPj0u+lzipL+7IZqlRWw4Nfhdf4DkKLPGOT86jPQlwB9zCzHzNKBm4FZp590zh1yznV0zvVyzvUCFgETdJaL1Mfto2qVdm3Q2Q0ArH0LDnptfrTo4F0ZKlKHOge6c64C+D7wAbAOeN05t8bMfmpmE2IdUIKtbcs0bhnZo3r9zJzY3qIrITgH858Ir0dOgfRW/uWRhKG2RfFdycETXPVfs6mo8v5IvHnfaIb2aO9zKh9tng2v3ORtp7aAH65Wb4tEUtuixC+VdtUSuXc+9HYNc6k3DXSJC1OvCtcBvL9mN0WlR31M46OdK2qVcN3vaxxJLBroEhcu75rJP9Uo7dricyKfLIgo4RowMdAlXBJ9GugSNyL30v+0rJi9R5LsouPaJVyjH/QtiiQmDXSJG6NyvNIuwCvtmr/V1zxNbsFvwIWulg14CZfEhga6xA0zY1pEHcAri7Zx9GSFj4ma0LF9sPz34XWAK3IldjTQJa5cN6ArOR29c66PlFXw6uIkKe36NLKEa5BKuKRRNNAlrqQ0MyaPrVnadaoi4KVdp47BpxFldWNUwiWNo4Eucefrud2qS7t2Hy5jVtBLu5bXKuHqf5OvcSRxaaBL3Kld2lUwdzNVVQG9sLiyAhaqhEuiQwNd4tLto3rSKlTatXHPUWZv2OtzohhZ+xYcDH1O0KKDd2WoSCNpoEtcql3aNX1OAOsAnIP5j4fXo6ZCekvf4kji00CXuPXdK3NIbeZ9OPjp1gMs3faFz4mirGg27F7lbae2gBGT/c0jCU8DXeLWxe1acOOQ8N0OpwetWnfe4+Ht3DugVZZvUSQYNNAlrk29KnwK44fr9rBpb0BKu3Yuhy1zvG1Lgfz7/M0jgaCBLnHtsi6ZjO/bGfAOOT/3SUCOpc+vVcLVvpdvUSQ4NNAl7k2LKO3687IS9h5O8NKuA0Xe2S2njVEJl0SHBrrEvRG92jO0RzsATlVW8bsFW33Nc8EWPhUu4bpkPFw02N88Ehga6BL3zIyp48J76b9ftI0jZeU+JroAR0tVwiUxo4EuCeG6/l3oHVHa9YdELe36tAAqQoeMLhoMOVf5m0cCRQNdEkKzZsaUiGrdF+YnYGnXyaM1S7hGP6gSLokqDXRJGDcN7UanzOYA7Dl8krdXlPicqIGW/x7KDnrb7XqqhEuiTgNdEkZGWgrfrVHaVZQ4pV2V5bDwN+H1aJVwSfRpoEtCuXVUD1o39wbh53uP8vH6BCntWvMmHNrhbbfMgiG3+ZtHAkkDXRJK2xZp3DoqorRrbgLUATgH858Ir0eqhEtiQwNdEs7dY3qRluJ9mLhk6xcs3XbA50R12PwR7Fntbae1hJEq4ZLY0ECXhHNR25qlXc/Ee7Vu5N557h3QsoN/WSTQNNAlIU2NOIXx7/Fc2lWyDLbM9bYtBfLv9zePBJoGuiSkPl0yubZfuLTr2blxupceuXd+xTe8e4aKxIgGuiSsqRGlXW8uL2FPvJV27d8M62aF1yrhkhir10A3s+vNbIOZbTKzh8/y/H8zs7VmttLMPjKzntGPKlLT8J7tyY0s7Zq/1dc8Z6hRwnUNdB3obx4JvDoHupmlAE8BNwD9gVvMrH+tly0HhjvnBgFvAP8V7aAitZlZjb30GfFU2nW0FFbMCK9VwiVNoD576COBTc65IufcKWAmcGPkC5xzs51zx0PLRUB2dGOKnN2X+nWhd6dQadfJOCrt+nR6uITr4qGQM87fPJIU6jPQuwE7ItbFocfO5R7gvbM9YWZTzKzQzAoLCgrO9hKRBmnWzGqc8fLC/C2crKj0MRGhEq5nw+sxD6mES5pEVD8UNbPbgeHAL872vHOuwDk33Dk3fMqUKdH81pLEbhrajc41Srt2+hto+SvhEq72vaDfBD/TSBKpz0AvAbpHrLNDj9VgZtcC/wuY4Jw7GZ14InVrnprC3fFS2lVZ7n0YetroB6BZij9ZJOnUZ6AvAfqYWY6ZpQM3A7MiX2BmQ4HpeMM8QdqSJEhuywuXdm3ys7SrRglXR5VwSZOqc6A75yqA7wMfAOuA151za8zsp2Z2+t+SvwBaA380sxVmNuscbycSE20y0rgtorTrmTk+lHbVLuEaNQ3SWjR9Dkla5pxvfdIJUmQtiWL3oTLG/tfHlFd6f7TemJbP8F5N2Jvy+d9hxje87bSW8MM16m2RWDjnJ+y6UlQCo2vbDG7ys7Rr/uPh7dw7NcylyWmgS6BMvap2adeRpvnGJUth6yfetqVA/n1N831FImigS6Bc2jmTa/t1qV4XNFVpV+Sx84HfVAmX+EIDXQJnWsRe+pvLS9h9KMalXfs3w9qI8wBGq4RL/KGBLoEzvFcHhvVsD0B5peN387fE9hsu/A3Vn/Ffei10vSK230/kHDTQJZAi6wBmLN7O4ViVdh3dC8tVwiXxQQNdAunafl24JFTadfRkBTMWxai0a/F0qAxdGH1xLvQaG5vvI1IPGugSSF5pV7haNyalXSePwhKVcEn80ECXwLpx6MV0aeOVdpUeOclby8+oILowy16GskPedofe0O+fo/v+Ig2kgS6B1Tw1he9GlHZNj2Zpl0q4JA5poEug3TKqB5mh0q6i0mN8uG5PdN549Z/gcLG33aoTDL4lOu8rcgE00CXQ2mSkcWtezdKuC+4vOqOEa6pKuCQuaKBL4H13TA5pKd6Hlcu3H6Rw2xcX9oab/g5713rbaa1g+D0XmFAkOjTQJfC6tMlg4tCI0q5/XGC1buTe+TCVcEn80ECXpDAl4hTGj9bvZeOeRpZ2FUeUcDVLhTyVcEn80ECXpHBp59Z8qX8USrsiK3Kv+Ca0637Ol4o0NQ10SRqRpV1vryhh16ETDXuD/Zth3Tvh9RiVcEl80UCXpDGsZwdG9Ios7drasDdY8CThEq4vQZcBUc0ncqE00CWpRNYB/GHxdg6dqGdp15E9sOLV8FolXBKHNNAlqYzv25k+nVsDodKuxdvq94WLnwmXcHUbBr2ujFFCkcbTQJek0qyZMSWiWveFeVspK6+jtOvkESh8PrxWCZfEKQ10STo3DulG1zYZAOw7Wo/SrqUv1Szh6vu1GCcUaRwNdEk66anN+O6VvarXBecr7ao4BYt+G16rhEvimAa6JKVbRvYgMyNU2rXvPKVdq/8Eh0N78K06weBbmyihSMNpoEtSysxI4/a8ntXrs5Z2VVXVKuGaBmkZTZRQpOE00CVp3T26F+kp3n8Cy7cfZMnWWqVdmz6E0nXednprGKESLolvGuiStDq3yeDruRGlXXNqlXbVKOG6C1q0b5pgIo2kgS5JbfK43tVnIH4cWdq1Ywlsm+9tN0uFvHv9CSjSABroktQu6dSa685W2rUgYu984LehbXYTJxNpOA10SXpTrwrXAby9ooS9W1bBur+EXzD6AR9SiTScBrokvdwe7RnZy7tJRXmlo+Svv6C6hKvPl6FLf//CiTRAvQa6mV1vZhvMbJOZPXyW55ub2Wuh5xebWa+oJxWJoamhat1OHGTA3nfDT6iESxJIal0vMLMU4CngS0AxsMTMZjnn1ka87B7gC+fcpWZ2M/BzYFLU0x7cXvPMA5EoGe/gycyddCrbSrpVALCjZX8KlreBFat9TidB9MA1l9I5M7rXNdQ50IGRwCbnXBGAmc0EbgQiB/qNwGOh7TeA35iZuQu+vXotx0phyXNRfUsRAAMmAERc1f/vB7/MB4u3+5RIgu7O0b3onBnd96zPIZduwI6IdXHosbO+xjlXARwCsmq/kZlNMbNCMyssKChoXGKRJrCmqicfVg3zO4ZIg9RnDz1qnHMFwOlJ3vC997bd4Su/jGomkUhHyspZt6+cLVnjeCxdFxJJ7HRq3Tzq71mfgV4CRN4JNzv02NleU2xmqUBbYH9UEkZq3RlGTo7624qclol3jHGk30FEGqE+h1yWAH3MLMfM0oGbgVm1XjMLuDO0/U3g46gfPxcRkfOqcw/dOVdhZt8HPsD7yOgF59waM/spUOicmwU8D7xiZpuAA3hDX0REmpD5uCOtPXgRkYY75/0PdaWoiEhAaKCLiASEBrqISEBooIuIBIRvH4r+5Cc/eR/o2JivPXr0aMfWrVvvi3KkuKafOTnoZ04OF/gz7/vxj398/dme8PMsl0Yzs0Ln3HC/czQl/czJQT9zcojVz6xDLiIiAaGBLiISEIk60JOxqlE/c3LQz5wcYvIzJ+QxdBEROVOi7qGLiEgtGugiIgGRcAO9rhtWB42ZdTez2Wa21szWmFlS3LXYzFLMbLmZ/cXvLE3BzNqZ2Rtmtt7M1plZvt+ZYs3Mfhj6M73azF41s+jeYDMOmNkLZrbXzFZHPNbBzD40s89D/x+1O6kk1ECPuGH1DUB/4BYz6+9vqpirAH7knOsP5AH3J8HPDPAQsM7vEE3oCeB951xfYDAB/9nNrBvwIDDcOXcFXjV3EGu3XwRqXwT0MPCRc64P8FFoHRUJNdCJuGG1c+4UcPqG1YHlnNvlnFsW2j6C9x967Xu6BoqZZQNfBZLijuBm1hYYh3dfAZxzp5xzB30N1TRSgRahu5y1BHb6nCfqnHNz8e4REelG4KXQ9kvATdH6fok20Otzw+rAMrNewFBgsc9RYu1x4H8AVT7naCo5QCnwu9BhpufMrJXfoWLJOVcC/BLYDuwCDjnn/uZvqibTxTm3K7S9G+gSrTdOtIGetMysNfAn4AfOucN+54kVM/sasNc5t9TvLE0oFcgFnnbODQWOEcV/hsej0HHjG/H+MrsYaGVmt/ubqumFbtUZtXPHE22g1+eG1YFjZml4w3yGc+7PfueJsTHABDPbindIbbyZ/d7fSDFXDBQ7507/y+sNvAEfZNcCW5xzpc65cuDPwGifMzWVPWZ2EUDo//dG640TbaDX54bVgWJmhndsdZ1z7ld+54k159wjzrls51wvvN/fj51zgd5zc87tBnaY2eWhh64B1voYqSlsB/LMrGXoz/g1BPyD4AizgDtD23cCb0frjeu8SXQ8OdcNq32OFWtjgO8Aq8xsReixR51zf/UvksTAA8CM0I5KEXC3z3liyjm32MzeAJbhncm1nABWAJjZq8DVQEczKwZ+DPwMeN3M7gG2Ad+O2vfTpf8iIsGQaIdcRETkHDTQRUQCQgNdRCQgNNBFRAJCA11EJCA00EVEAkIDXUQkIP4/Rf5RhLHbnk0AAAAASUVORK5CYII=\n" }, "metadata": { "needs_background": "light" } } ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [ { "output_type": "display_data", "data": { "text/plain": "
", "image/svg+xml": "\n\n\n \n \n \n \n 2021-06-24T19:40:46.519867\n image/svg+xml\n \n \n Matplotlib v3.4.2, https://matplotlib.org/\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n", "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAD4CAYAAAD8Zh1EAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAAAoyklEQVR4nO3deXhUZZr38e+dhBAIYQuLQFjCKnuAsITVlrbFRkVHaUO3goIGWmnHnpnu135nphe7Z157XqcHbFGIouKGC+2Cja22ILIvQREQRJYESNh3EgiQ5Jk/TqXqJBBSSarqVJ26P9fl5fNUnTq5C8Kdk1Pn+R0xxqCUUiryxThdgFJKqcDQhq6UUi6hDV0ppVxCG7pSSrmENnSllHKJOAe/tl5eo5RSNSdVPaFH6Eop5RLa0JVSyiW0oSullEtoQ1dKKZfQhq6UUi6hDV0ppVyi2oYuIi+KyFER2VbF8yIiT4vIbhHZIiIDA1+mUkqp6vhzHfrLwDPAK1U8fwvQzfPfUOA5z/8Dr/gsHPwqKLsOe0ltoGV3p6tQKmCMMew6WsjxcxedLsURaR2a0jA+sEuBqt2bMWaFiHS6xiYTgFeMlcO7TkSaikgbY8yhQBXpdWIXvHJ7wHcbMW6dBekPOF2FUgHxwspc/uOjHU6X4ZjP/mkMXVs1Cug+A3EOvR1wwDbP9zx2BRHJEpEcEcnJzs4OwJeOMp//J1wudroKpersXPFlnl62y+kyXCekS/+NMdlAeSev+dL/+CToNCqgNUWEw1ug+AwUHYWvF+pRuop4Czfs51xxCQDNE+Pp0TrJ4YpCr0F8bMD3GYiGXgC0t81TPI8FXsvucP9fg7LrsLbmGfj0Xz3jP8PAyRAT+G8GpULhUkkZ81fleue/vLkHmUM6OFiRewTilMtiYLLnapdhwJmgnD+PZoOmQP0m1vjkHvh2ibP1KFUHH2wu4MhZ64PQlkn1uWPAVc/Qqlrw57LFhcBaoIeI5IvINBGZISIzPJt8BOwFdgPPAw8HrdpoVT8JBk/zzVfPAr0XrIpAZWWG7BV7vfMHRnQioZ7+thko4uBNorUj1cS5IzCrL5R6LvG6/yPoNMLZmpSqoaU7jjBtQQ4AifGxrPnVWJo0qOdwVRFH43MjXlJrSJvkm6+e5VgpStXWvC98R+c/HtpBm3mAaUOPJBk/w/vDedencOQbR8tRqiY27TvFhryTAMTFCFNHpjpckftoQ48kLbpCz1t98zV/dq4WpWpo3hd7vOMJae1o06SBg9W4kzb0SDPiMd946ztwJt+xUpTy1+6jhfx9xxHvfPqYzg5W417a0CNNSjp0HGmNy0pg7bPO1qOUH15Yudd7YdbY61vRPQoXEoWCNvRINOIffeNNL8OFU46VolR1jp4t5t0vfWsNZ9zQxcFq3E0beiTqdhO06mWNLxfBxhecrUepa3hxdR6XSssAGNihKekdmzlckXtpQ49EIjD8Ud98/TwN7VJh6VzxZV5ft887nz6mCyJVXkat6kgbeqTqezc0TrHGRcfg6zecrUepq1i4YT/nLlohXJ1bJnJTz9YOV+Ru2tAjVWw9yLClLKz5M5SVOlePUpVcLCmtEMI1fXRnYmL06DyYtKFHsoGTIaE8tGsvfBuFSZQqbH2w+aCGcIWYNvRIVj8JBj/om6+apaFdKixUDuGaOiKV+nEawhVs2tAj3dAZEFvfGh/8EvJWOVuPUsCyb4+y+2ghAI3qx/HjoZp3Hgra0CNdo1aQ9mPfXEO7VBiYa1vm/xMN4QoZbehuMNwW2rX7Mzi8zdFyVHTLyTtJzj5rsVu9WOGBERrCFSra0N0guQv0vM03X/O0c7WoqDfPdu78jrR2XNckwcFqoos2dLeoENq1CE7vd6wUFb12Hz3H37f7QriyRmsIVyhpQ3eLlEHQaZQ1NqWw7jln61FRyX5ly/d7tqKbhnCFlDZ0N6kQ2rUAzp90rhYVdQ6fKea9r2whXGM0hCvUtKG7SdfvQ6ve1lhDu1SIvbQ6l8ul1jqIQR2bkd6pucMVRR9t6G4iUvEoff08uHzBuXpU1DhbfJnX1/s+t5mu584doQ3dbfr8AzRpb43PH4fNGtqlgu+N9fsp9IRwdWmZyPc1hMsR2tDdJrYeZDzim2tolwqyiyWlvFghhKuLhnA5RBu6Gw24DxKaWuNTubBjsaPlKHd7/6sCjp6zQrhaN67PhAFtHa4oemlDd6P6jWDIQ765hnapICkrMxUWEmkIl7O0obvVkOkQ51mhd2gz5K10tBzlTp/tOMLeY0UAJNWPY5KGcDlKG7pbNWoJaT/xzVfNcqwU5U7GmAohXD8e1oHGCRrC5SRt6G42fCaI5694z1I4vNXZepSr5Ow7xZf7TwMQHxvDVA3hcpw2dDdr3hl63u6br9bQLhU482xH53cOaEfrxhrC5TRt6G5nX2i07S8a2qUCYteRc3y246h3/pAuJAoL2tDdrt1ASB1tjU0prJ3jbD3KFewhXDf1ak3XVo0crEaV86uhi8g4EdkpIrtF5PGrPN9BRD4Xka9EZIuI/DDwpapasx+lf/mKhnapOjl8ppj3N9tDuPToPFxU29BFJBaYA9wC9AImiUivSpv9G/C2MWYAkAk8G+hCVR10GQut+1jjy+c1tEvViT2Ea3CnZgzqqCFc4cKfI/QhwG5jzF5jzCXgTWBCpW0M0NgzbgIcDFyJqs6uCO2aC5fOO1ePilhnLlQO4dKI3HDiT0NvBxywzfM9j9n9FrhXRPKBj4CfXW1HIpIlIjkikpOdnV2LclWt9b4TmngWfZw/AV9raJeqOXsIV9dWjbjx+lYOV6TsAvWh6CTgZWNMCvBD4FURuWLfxphsY0y6MSY9KysrQF9a+eVqoV2lJc7VoyLOxZJSXlztC+HKGt1ZQ7jCjD8NvQBob5uneB6zmwa8DWCMWQskAC0CUaAKoIH3QYNm1vhUnoZ2qRp578sCjtlDuNI0hCvc+NPQNwLdRCRVROKxPvSs3An2A2MBRKQnVkM/FshCVQDEJ8JgW2jX6tka2qX8UlZmKlyqOG2khnCFo2obujGmBJgJfALswLqa5RsReUJEypch/jPwkIh8DSwE7jdGO0VYGpJVMbQrd4Wj5ajI8PcdR9h73BbCNURDuMJRnD8bGWM+wvqw0/7Yr23j7cCIwJamgqJRSxhwr+/SxdWzoPMYR0tS4c0YU2GZ/0+GdSRJQ7jCkq4UjUYZj9hCu5bBoS3O1qPC2sa8yiFcnRytR1VNG3o0at4ZetmWEqzR0C5VNfvR+T8MbEcrDeEKW9rQo9XwR33jbe/CqX3O1aLC1ndHzrH0WyuES0RDuMKdNvRoVTm0a52mNagrzfvCFsLVszVdWmoIVzjThh7NRjzmG2tol6rk0JkLfGAL4Zo+Rpf5hztt6NGsy43Quq81vnweNjzvbD0qrLy4KpeSMuvq4yGdmjOoYzOHK1LV0YYezSqHdm2Yp6FdCrBCuN6wh3BpRG5E0IYe7SqHdm1+3dl6VFh4bd0+ii6VAtCtVSO+10NDuCKBNvRoFxunoV2qguLLpby0Os87f0hDuCKGNnRVMbTr9D7Y8YGz9ShHvfdVAccLrRCu6xoncEda5bRsFa60oSsrtGuILc5YQ7uiVmmZ4flKIVzxcdomIoX+TSlLhdCur2HvckfLUc74+3ZbCFdCHJlD2lfzChVOtKErS2ILK7Sr3OpZjpWinGGMYa5tmf+9GsIVcbShK5+Mmb7Qrr3LrSN1FTU25J5k84HTgBXC9cDwTo7Wo2pOG7ryaZ4Kve7wzVfPdqwUFXr2o/O7BmkIVyTShq4qsi80+uY961Z1yvW+PXyWz3daNxkTgQdH6UKiSKQNXVXUNg0632CNTRmsneNkNSpE7LeX+0EvDeGKVNrQ1ZXsR+lfvgpFx52rRQVdwekLLN580DufoSFcEUsburpS5+/Bdf2scckFDe1yuQohXKnNGdBBQ7gilTZ0daWrhnYVOVePCpoz5y+zcIMvhGuGhnBFNG3o6up63QFNO1rjC6fgKw3tcqPX1u/jvCeEq3vrRtzQXUO4Ipk2dHV1sXEw/Ge++VoN7XIbK4Qr1zufPrqLhnBFOG3oqmppP4EGza3x6f2w/X1Hy1GB9Zcv8zleeAmANk0SuK1/W4crUnWlDV1VLb4hDJ3um6+epaFdLqEhXO6kf4Pq2gY/BHENrPHhrbD3c2frUQHx6TeHyTth3Z2qcUIcmUM6OFyRCgRt6OraEpNh4GTfXOMAIp4xhrm2o/P7MjrSqH6cgxWpQNGGrqqX8QhIrDXeuxwOfuVoOapu1uee5OvyEK64GKZoCJdraENX1WvW0br3aLnVTztXi6qzCiFcA1NolaQhXG6hDV35Z8SjvvH29+FkbpWbqvC149BZlttCuB4alepwRSqQtKEr/7Tpb0UCgIZ2RTD7lS3jel9HZw3hchW/GrqIjBORnSKyW0Qer2KbH4nIdhH5RkTeCGyZKiyMfMw3/uo1De2KMAdPX2Dx174QrqzRuszfbapt6CISC8wBbgF6AZNEpFelbboBvwJGGGN6A48FvlTluNQx1pE6eEK7sp2tR9XIfFsI11AN4XIlf47QhwC7jTF7jTGXgDeBCZW2eQiYY4w5BWCMORrYMlVYuCK0K1tDuyLElSFcGpHrRv409HbAAds83/OYXXegu4isFpF1IjLuajsSkSwRyRGRnOxsPbqLSD0nVArtes3ZepRfXl2X5w3h6tE6iRt6tHS4IhUMgVpNEAd0A24AUoAVItLXGHPavpExJhso7+S6hjwSlYd2ffQv1nzNM5A+zXpchaXiy6W8vCbPO58+pjMiGsLlRv4coRcA7W3zFM9jdvnAYmPMZWNMLvAdVoNXbpT2E2iYbI3P7LfuParCloZwRQ9/GvpGoJuIpIpIPJAJLK60zftYR+eISAusUzB7Ue4U3xCG2EO7ZmtoV5i6WghXvVi9Wtmtqv092RhTIiIzgU+AWOBFY8w3IvIEkGOMWex57gcish0oBX5hjDkRzMKVw4Y8ZKUvXj4PR7bCnmXQdazTValKPrGFcDVpUI9JDoZwXb58mfz8fIqLix2rIZIkJCSQkpJCvXr1/H6NGOeOrPSQLtJ99Evr9nRgXdI4pfIvbspJxhjumLOar/PPADDze135l5t7OFZPbm4uSUlJJCcn6zn8ahhjOHHiBOfOnSM19YrVvFX+4envXqr27KFduV9AwZfO1qMqWLf3pLeZh0MIV3FxsTZzP4kIycnJNf5tRhu6qr1mHaHPP/jmazS0K5zYQ7juHpRCy6T6DlZj0Wbuv9r8WWlDV3Uz3B7a9QGc1M/Cw8GOQ2f54jtfCFfWKF3mX+79999HRPj222+dLiXgtKGrumnTD7rcaI1NmXVdunJctu3Kllv6XEenFokOVhNeFi5cyMiRI1m4cGFA9ldSEj43T9eGrupuxGO+8ebXofCYY6UoyD91vkII1/TRusy/XGFhIatWrWL+/Pm8+eabACxfvpzRo0czfvx4evTowYwZMygrKwOgUaNG/PznP6d3796MHTuWY8es7+0bbriBxx57jPT0dGbPns3SpUsZMGAAffv2ZerUqVy8eJGPP/6YiRMner/28uXLufXWWwH49NNPycjIYODAgUycOJHCwsKAvD9d3qfqLnU0tEmDQ5uhpNi68uXGf3O6qqj14qo8Sj0hXBmdk+nfvqmzBV1Fp8eXBG3feU+Or/K5Dz74gHHjxtG9e3eSk5PZtGkTABs2bGD79u107NiRcePG8e6773L33XdTVFREeno6//M//8MTTzzB7373O555xvot9NKlS+Tk5FBcXEy3bt1YunQp3bt3Z/LkyTz33HPMnDmTrKwsioqKSExM5K233iIzM5Pjx4/zhz/8gc8++4zExET++Mc/8qc//Ylf//rXdX7veoSu6u6K0K7n4WJgjjhUzZw+f4k3N/pCuKaP0XPndgsXLiQzMxOAzMxM72mXIUOG0LlzZ2JjY5k0aRKrVq0CICYmhnvuuQeAe++91/s44H18586dpKam0r17dwCmTJnCihUriIuLY9y4cXz44YeUlJSwZMkSJkyYwLp169i+fTsjRowgLS2NBQsWsG/fvoC8Pz1CV4HR83Zo1glO5UHxafjqVRj2U4eLij6vrt3nDeG6/rokxnTXEK5yJ0+eZNmyZWzduhURobS0FBFh/PjxV1xRUtUVJvbHExOr/1wiMzOTZ555hubNm5Oenk5SUhLGGG666aaAncO304auAqM8tGvJP1vztXNg8IMQ6/8qN1U3lUO4skaHbwjXtU6LBMuiRYu47777mDdvnvexMWPGsHLlSjZs2EBubi4dO3bkrbfeIisrC4CysjIWLVpEZmYmb7zxBiNHjrxivz169CAvL4/du3fTtWtXXn31VcaMGePd/9SpU3n++ee9vxkMGzaMRx55xLt9UVERBQUF3iP8utBTLipw0n4CDVtY4zMHNLQrxN7ZlM+JIiuEq13TBhrCVcnChQu58847Kzx21113sXDhQgYPHszMmTPp2bMnqamp3u0SExPZsGEDffr0YdmyZVc9z52QkMBLL73ExIkT6du3LzExMcyYMQOA2NhYbr31Vv72t795PxBt2bIlL7/8MpMmTaJfv35kZGQE7BJKXfqvAuuL/4LP/8Mat+4DM1ZZ59hVUJWWGb731HL2n7RyW359ay+mjgyvG0Dv2LGDnj17Ol3GFZYvX85TTz3FX//61yuea9SoUcCuQKmNKv7MdOm/CpHBD0K9htb4yDbYs9TZeqLEx9sOe5t5kwb1uGdw+2peodxIG7oKrIbNYeAU33zVLMdKiRbGmArL/CdndCSxvn485q8bbrjhqkfngKNH57WhDV0FXsbDvtCuvJUa2hVka/ecYGuBFcJVPwxCuJRztKGrwGvaAfrc5Zuvnu1cLVFgrm2Z/8T0FFo0cj6ESzlDG7oKDvtCox2L4cSeqrdVtbb94FlWeEK4YgQeHKkLiaKZNnQVHNf1ga7ft8amDNZqaFcwzFvh+0F5S982GsIV5bShq+CxH6V/9ToUHnWuFhc6cPI8f91yyDufPlqPzqsTGxtLWloaffr04bbbbuP06dPX3H7u3Lm88sorNf46p0+f5tlnn61llbWnDV0FT6dR0HagNS69COvnXXt7VSPzV+V6Q7iGd0mmX0pTZwuKAA0aNGDz5s1s27aN5s2bM2fOnGtuP2PGDCZPnlzjr6MNXblP5dCujRraFSinii7x1sYD3vn0MRqRW1MZGRkUFBQAsGfPHsaNG8egQYMYNWqUd+Xmb3/7W5566qlrbnPkyBHuvPNO+vfvT//+/VmzZg2PP/44e/bsIS0tjV/84hche096saoKrp63QbNUOJULxWfgywXWvUhVnbyydh8XLlshXD3bNGZ0txYOV1RDv20SxH2fqXaT0tJSli5dyrRp0wDIyspi7ty5dOvWjfXr1/Pwww+zbNmyCq+paptHH32UMWPG8N5771FaWkphYSFPPvkk27ZtY/PmzcF4h1XShq6CKybWE9r1T9Z87bMwJEtDu+rgwqVSFqzN886nh3EIV7i5cOECaWlpFBQU0LNnT2666SYKCwtZs2ZNhZtRXLx4scLrrrXNsmXLvOfZY2NjadKkCadOnQrBu7mSNnQVfGk/huX/D4qOwdl82PYX6J/pdFURa9GmA5y0hXCN79fG4YoiR/k59PPnz3PzzTczZ84c7r//fpo2bXrNo+mysrJqtwkH2tBV8NVrAEOnw7I/WPPVs6HfPRraVQslpWU8vzLXO39wVCr1YiPwozA/TosEU8OGDXn66ae54447ePjhh0lNTeWdd95h4sSJGGPYsmUL/fv3927fuHHjKrcZO3Yszz33HI899pj3lEtSUhLnzp0L+fuKwO8EFZHSp0E9zzXSR7fD7s+crSdC/c0WwtW0oYZw1cWAAQPo168fCxcu5PXXX2f+/Pn079+f3r1788EHH3i3Kz+dVdU2s2fP5vPPP6dv374MGjSI7du3k5yczIgRI+jTp49+KKpcqGFzGDQF1nku5Vo1C7rd5GhJkcYYU2Eh0eSMTjSM13/CNVE5bOvDDz/0jj/++OMrtj9x4gQdO3YEIDU19arbtG7dusIPgHJvvPFGXcutMT1CV6Ez7GGI8TSgfasgP8fZeiLMmj0n2FZwFoCEejFMyejocEXu9u///u+sX7+e22+/3elS/KYNXYVO0/bQ527fXEO7asQekTtxUHuSNYQrqH7/+9+zYcMGkpOTnS7Fb9rQVWiNeNQ33vGhhnb5aVvBGVbuOg5YIVwPjdJl/upK2tBVaLXuDV3Lz50bWPNnR8uJFNm2iNwf9m1Dh+SGDlZTew7e8jLi1ObPShu6Cj17HMDmNzS0qxoHTp5nyVZfCNeMCF3mn5CQwIkTJ7Sp+8EYw4kTJ0hISKjR6/z6iFxExgGzgVjgBWPMk1VsdxewCBhsjNFPvNTVdRoJ7QZBwSZPaNdcGHvl3dSVxR7CNbJrC/q0C+Ky+SBKSUkhPz+fY8eOOV1KREhISCAlJaVGr5HqflqKSCzwHXATkA9sBCYZY7ZX2i4JWALEAzP9aOj6Yzqabf8A3vak2CU0gZ9/A/WTnK0pDJ0susTwJ5dSfLkMgFenDWFUt5YOV6UcVuWKPH9OuQwBdhtj9hpjLgFvAhOust3vgT8CxbUqUUWX62+F5p4P9orPwKYFztYTpl5Zm+dt5r3aNGZk1wgL4VIh5U9DbwccsM3zPY95ichAoL0xZsm1diQiWSKSIyI52dnZNS5WuUh5aFe5dc9C6WXn6glDFy6VsmBNnnc+fYyGcKlrq/MyMxGJAf4E3F/dtsaYbKC8k+spl2jXfxJ8/p+e0K4CDe2q5J1NBzh13vohl9KsAeP7agiXujZ/jtALAHtgRIrnsXJJQB9guYjkAcOAxSKSHqgilUvVawBDZ/jmq2eDXgEBlIdw+S5VfGhUZ+IiMYRLhZQ/3yEbgW4ikioi8UAmsLj8SWPMGWNMC2NMJ2NMJ2AdcLte5aL8MrhSaNeuvztbT5j4aNthDpy8AECzhvWYmF6zqx1UdKq2oRtjSoCZwCfADuBtY8w3IvKEiEROyIEKTw2awaD7fXONA7BCuL7QEC5Vc9VethhE+ru1spw+AE+nQVmJNX9wKaRE7xm7VbuOc+/89YAVwrX6/9youS3Krk6XLSoVXBraVYE9IvdH6RrCpfynDV2FB3scwI4P4fhu52pxUOUQrgdHagiX8p82dBUeWveCbj/wTAysjc7Qrnm2EK7x/dpGbAiXcoY2dBU+KoR2LYRzR5yrxQEHTp5nyZaD3vn00Xp0rmpGG7oKHx1HWKFd4AvtiiLPr9yLJ4MrokO4lHO0oavwIVLxKH3jfLgY+junO+FE4UXezvElbEwfo0fnqua0oavwcv2t0NyT933xDGx62dFyQuWVtfu8IVy922oIl6odbegqvFQO7Vr7LJRccq6eEDh/qYRX1uZ551mjNYRL1Y42dBV++k+CRE/m97mDsG2Rs/UE2Ts5+RrCpQJCG7oKP/USKoV2PQ1lZc7VE0QawqUCSb9zVHgaPA3iG1njYztg16fO1hMkS7YeIv+UL4TrR+ntq3mFUlXThq7CUxSEdlkhXL6j8ynDO9EgPtbBilSk04auwtewn0KMJ2Vw/xo4sMHZegJs1e7jbD90FrBCuCZndHK2IBXxtKGr8NUkBfr+yDd32VH6XFtEbubgDjRPjHewGuUG2tBVeBvxqG/87RI49p1ztQTQ1vwzrN59AoDYGGHayFSHK1JuoA1dhbdWPaHbzZ6Je0K77BG54/u2oX1zDeFSdacNXYW/kY/5xl+/CecOO1ZKIOw7UcRHWw9551kawqUCRBu6Cn8dMiBlsDUuvRTxoV0vrMz1hnCN6qYhXCpwtKGr8HdFaNeLUHzWuXrq4HilEK4ZY7o4WI1yG23oKjL0GA/JXa3xxTOw6SVn66mlV9bkcbHEWvXap11jhndJdrgi5Sba0FVkiImB4bYrXtY9F3GhXUUXS1iwdp93njW6i4ZwqYDShq4iR797oFFra3zuEGx9x9l6aujtnAOcuWCFcLVv3oAf9rnO4YqU22hDV5GjXoK1erTcmsgJ7bpcWsYLK3O98ywN4VJBoN9RKrIMegDik6zxsW9h1yfO1uOnJVsOUXDaCuFqnhjP3YM0hEsFnjZ0FVkaNIX0+33zCIgDMMZUWOY/JUNDuFRwaENXkWfoTyGmnjXevxb2r3e2nmqs2HWcbw9b90ZtUC+WyRkdHa5IuZU2dBV5mrSDfpET2jXPdnR+z+D2NNMQLhUk2tBVZLJfwrjzo7AN7dqSf5o1e3whXA+O0hAuFTza0FVkanU9dL/FMzHWFS9hyH4Di9v6tSGlmYZwqeDRhq4ilz0OYMtbcPZQ1ds6IO94EX/bZg/h0mX+Krj8augiMk5EdorIbhF5/CrP/5OIbBeRLSKyVET0Ux8VfB2GQcoQaxyGoV0vrNrrDeEa3b0lvdo2drYg5XrVNnQRiQXmALcAvYBJItKr0mZfAenGmH7AIuC/Al2oUleoHNqVEz6hXccLL/JOTr53PkMjclUI+HOEPgTYbYzZa4y5BLwJTLBvYIz53Bhz3jNdB6QEtkylqtDjh5DczRpfPBs2oV0LbCFc/VKakKEhXCoE/Gno7YADtnm+57GqTAP+drUnRCRLRHJEJCc7O9v/KpWqSkxMxdvUrXsOSi46Vw9WCNcrthCu6RrCpUIkLpA7E5F7gXRgzNWeN8ZkA+Wd3ATya6so1u8eWPYfUHjYF9o14F7Hynlroy+Eq0PzhozTEC4VIv4coRcA9uCJFM9jFYjI94F/BW43xjh7iKSiS1x9GDbDN1/tXGjX5dIy5q/yhXA9NLozsTF6dK5Cw5+GvhHoJiKpIhIPZAKL7RuIyABgHlYzPxr4MpWqRvpUX2jX8Z2OhXbZQ7iSE+OZOEg/TlKhU21DN8aUADOBT4AdwNvGmG9E5AkRud2z2f8HGgHviMhmEVlcxe6UCo6EJpD+gG++albIS6gcwnX/8E4k1NMQLhU6Yoxjp7L1HLoKrLMHYVY/KLPOXzP1E+ta9RBZvvMo97+0EbBCuNb+6kaaNtTcFhVwVZ7D05Wiyj0at7U+IC0X4tAu+zL/zCHttZmrkNOGrtxlROXQrp0h+bJfHzjN2r2+EK5pIzWES4WeNnTlLi17WIuNyoUotGveCt+589v7t9UQLuUIbejKfexxAF+/ZZ1bDyIrhOuwd56ly/yVQ7ShK/fpMAzaD7XGZZet1aNB9PzKvZRfWzCme0t6ttEQLuUMbejKnSqEdr0ExWeC8mWOnbvIO5t8IVzTx+jRuXKONnTlTt1vgRbdrfGlc1YSYxAsWJPHJU8IV/+UJmR01hAu5Rxt6MqdYmIq3qYuCKFdVghXnnc+fYyGcClnaUNX7tXvR5DUxhoXHrHuahRAb248wNniEgA6JTfk5t4awqWcpQ1duVdcfRj2U988gKFdl0vLmL/St5BIQ7hUONCGrtxt0P1Q33PVyYld1mKjAPjw64McPFMMQItG8dw1UEO4lPO0oSt3qxzatXoW1DG/yBhTYZm/hnCpcKENXbnf0J9CTD1rnL8R9q+r0+6Wf3eMnUfOAdAwPpZ7h+k90VV40Iau3K9xG+hvD+2aVafdzbNF5GYO7qAhXCpsaENX0WG4baHRdx/D0R212s3mA6dZt/ckAHExwrRRGsKlwoc2dBUdWnaHHuN98zV/rtVu7Efnt/dvS7umDepamVIBow1dRQ97HMCWt+HMFbfGvabc40V8/I0thEuX+aswow1dRY8OQ6FDhjUuuwzraxbalb3CF8J1Q4+WXH+dhnCp8KINXUWXCqFdL8OF03697Oi5Yv7ypS2Ea3SXwNalVABoQ1fRpdvN0PJ6a1yD0K6XV9tCuNo3ZVjn5sGqUKla04auosvVQrsuF1/zJYUXS3ht3T7vfMbozhrCpcKSNnQVffpOhKS21rjoaLWhXW9u2F8hhOsHGsKlwpQ2dBV94uIrhnatqTq061JJGfNX5XrnGsKlwpk2dBWdBt0P9ZtY4xO7qwzt+vDrgxzSEC4VIbShq+iU0BgGT/XNrxLaVVZmmLfCt5DogRGpGsKlwpo2dBW9hs6AWE8OS/5G2L+2wtPLvzvKd0cKAUiMj+XeoRrCpcKbNnQVvZKug/6ZvvmqWRWenmuLyJ00pANNGtYLUWFK1Y42dBXdhj8KeD7k3PWJN7Try/2n2JDrC+GaOlJDuFT404auoluLbnD9laFd2baj8wlp7WirIVwqAmhDV2rEY77xlrfJy/2OT7bbQrhGawiXigza0JVqPxg6DLfGZZfZv+S/vRe83Hh9K3pcl+RcbUrVgF8NXUTGichOEdktIo9f5fn6IvKW5/n1ItIp4JUqFUy20K6Bx96nMUUATNejcxVBxFRzw1wRiQW+A24C8oGNwCRjzHbbNg8D/YwxM0QkE7jTGHPPVXfoU+M79eafOl/h5rxKBYqYMmbuvI9WxXkArCjtS2FiB27p0waNbVFBMfqXkNS6Nq+s8jsyzo8XDwF2G2P2AojIm8AEYLttmwnAbz3jRcAzIiKmup8WNXSi8BKv2kKSlAqkophx/Hf8XABGx26F4q2Q43BRyr2GTK9tQ6+SP6dc2gEHbPN8z2NX3cYYUwKcAZIr70hEskQkR0RysrOza1exUkGyuGw4e8raOF2GUrXmzxF6wBhjsoHyTl7jo/e2TRvwxITegS1KKZtNF1/j5MlV9GpZn8T6If3noaJNo5YB36U/37EFQHvbPMXz2NW2yReROKAJcCIgFdq0TKrP5IxOgd6tUjadgHSni1CqVvw55bIR6CYiqSISD2QCiyttsxiY4hnfDSwL9PlzpZRS11btEboxpkREZgKfALHAi8aYb0TkCSDHGLMYmA+8KiK7gZNYTV8ppVQIVXvZYhDpEbxSStVclZct6kpRpZRyCW3oSinlEtrQlVLKJbShK6WUSzj2oejvfve7j4EWtXltYWFhi0aNGh0PcElhTd9zdND3HB3q+J6P/+Y3vxl3tSecvMql1kQkxxgTVas/9D1HB33P0SFY71lPuSillEtoQ1dKKZeI1IYejVGN+p6jg77n6BCU9xyR59CVUkpdKVKP0JVSSlWiDV0ppVwi4hp6dTesdhsRaS8in4vIdhH5RkT+sfpXRT4RiRWRr0Tkr07XEgoi0lREFonItyKyQ0QynK4p2ETk557v6W0islBEEpyuKdBE5EUROSoi22yPNReRv4vILs//mwXq60VUQ/fcsHoOcAvQC5gkIr2crSroSoB/Nsb0AoYBj0TBewb4R2CH00WE0GzgY2PM9UB/XP7eRaQd8CiQbozpgxXN7cbY7ZeByouAHgeWGmO6AUs984CIqIaO7YbVxphLQPkNq13LGHPIGPOlZ3wO6x965Xu6uoqIpADjgRecriUURKQJMBrrvgIYYy4ZY047WlRoxAENPHc5awgcdLiegDPGrMC6R4TdBGCBZ7wAuCNQXy/SGro/N6x2LRHpBAwA1jtcSrDNAn4JlDlcR6ikAseAlzynmV4QkUSniwomY0wB8BSwHzgEnDHGfOpsVSHT2hhzyDM+DLQO1I4jraFHLRFpBPwFeMwYc9bpeoJFRG4FjhpjNjldSwjFAQOB54wxA4AiAvhreDjynDeegPXDrC2QKCL3OltV6Hlu1Rmwa8cjraH7c8Nq1xGReljN/HVjzLtO1xNkI4DbRSQP65TajSLymrMlBV0+kG+MKf/NaxFWg3ez7wO5xphjxpjLwLvAcIdrCpUjItIGwPP/o4HacaQ1dH9uWO0qIiJY51Z3GGP+5HQ9wWaM+ZUxJsUY0wnr73eZMcbVR27GmMPAARHp4XloLLDdwZJCYT8wTEQaer7Hx+LyD4JtFgNTPOMpwAeB2nG1N4kOJ1XdsNrhsoJtBHAfsFVENnse+7/GmI+cK0kFwc+A1z0HKnuBBxyuJ6iMMetFZBHwJdaVXF/hwggAEVkI3AC0EJF84DfAk8DbIjIN2Af8KGBfT5f+K6WUO0TaKRellFJV0IaulFIuoQ1dKaVcQhu6Ukq5hDZ0pZRyCW3oSinlEtrQlVLKJf4X1aHHeFpT334AAAAASUVORK5CYII=\n" }, "metadata": { "needs_background": "light" } } ], "source": [ "variables['decision'].plot()" ] } ], "metadata": { "kernelspec": { "name": "python3", "display_name": "Python 3.9.5 64-bit" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.9.5" }, "interpreter": { "hash": "4cd7ab41f5fca4b9b44701077e38c5ffd31fe66a6cab21e0214b68d958d0e462" } }, "nbformat": 4, "nbformat_minor": 5 }