Base Model
Base structure for creation of new models
- Methods:
calc_error: Estimates error according to SciKit’s regression metrics
filter_ts: Returns model’s residuals
-
class
skfore.base_model.
base_model
[source]
Bases: object
-
ACF_plot
()[source]
-
PACF_plot
()[source]
-
calc_error
(ts, error_function=None, ignore_first=0)[source]
Estimates error according to SciKit’s regression metrics
- Args:
- ts:
Time series to estimate the model
- error_function (None or error function):
Error function whose
parameters are real time series and estimated time series. If
None, error_function is Sci-Kit learn’s mean squared error
-
cross_validation
(ts, n_splits, error_function=None)[source]
-
density_plot
()[source]
-
filter_ts
(ts, ignore_first=0)[source]
Returns model’s residuals
- Args:
ts: Time series to estimate residuals
-
get_predict_ci
(ts, confidence_interval=0.95, iterations=1000)[source]
-
histogram
()[source]
-
normality
()[source]
-
plot
(ts, periods=5, confidence_interval=None, iterations=300)[source]
-
qq_plot
()[source]
-
set_residuals
(residuals)[source]
-
simulate
(ts, periods=5, confidence_interval=0.95, iterations=1000)[source]
-
test
()[source]
Raises error if there are not any of the necessary methods defined
-
time_plot
()[source]