Base Model
Base structure for creation of new models
- Methods:
calc_error: Estimates error according to SciKit’s regression metrics
filter_ts: Returns model’s residuals
-
class
skfore.base_model.base_model[source]
Bases: object
-
ACF_plot()[source]
-
PACF_plot()[source]
-
calc_error(ts, error_function=None, ignore_first=0)[source]
Estimates error according to SciKit’s regression metrics
- Args:
- ts:
Time series to estimate the model
- error_function (None or error function):
Error function whose
parameters are real time series and estimated time series. If
None, error_function is Sci-Kit learn’s mean squared error
-
cross_validation(ts, n_splits, error_function=None)[source]
-
density_plot()[source]
-
filter_ts(ts, ignore_first=0)[source]
Returns model’s residuals
- Args:
ts: Time series to estimate residuals
-
get_predict_ci(ts, confidence_interval=0.95, iterations=1000)[source]
-
histogram()[source]
-
normality()[source]
-
plot(ts, periods=5, confidence_interval=None, iterations=300)[source]
-
qq_plot()[source]
-
set_residuals(residuals)[source]
-
simulate(ts, periods=5, confidence_interval=0.95, iterations=1000)[source]
-
test()[source]
Raises error if there are not any of the necessary methods defined
-
time_plot()[source]