Base Model

Base structure for creation of new models

Methods:

calc_error: Estimates error according to SciKit’s regression metrics filter_ts: Returns model’s residuals

class skfore.base_model.base_model[source]

Bases: object

ACF_plot()[source]
PACF_plot()[source]
calc_error(ts, error_function=None, ignore_first=0)[source]

Estimates error according to SciKit’s regression metrics

Args:
ts:

Time series to estimate the model

error_function (None or error function):

Error function whose parameters are real time series and estimated time series. If None, error_function is Sci-Kit learn’s mean squared error

cross_validation(ts, n_splits, error_function=None)[source]
density_plot()[source]
filter_ts(ts, ignore_first=0)[source]

Returns model’s residuals

Args:

ts: Time series to estimate residuals

get_predict_ci(ts, confidence_interval=0.95, iterations=1000)[source]
histogram()[source]
normality()[source]
plot(ts, periods=5, confidence_interval=None, iterations=300)[source]
qq_plot()[source]
set_residuals(residuals)[source]
simulate(ts, periods=5, confidence_interval=0.95, iterations=1000)[source]
test()[source]

Raises error if there are not any of the necessary methods defined

time_plot()[source]