AR Model¶
Overview¶
This module contains AR models using four diferent parameter optimization methods: SciPy’s minimization, SciKit’s Ridge linear model, SciKit’s Lasso linear model and SciKit’s Elastic Net linear model.
Examples¶
AR model using SciPy’s minimization:
>>> ts = pandas.Series.from_csv('../datasets/champagne.csv', index_col = 0, header = 0)
>>> model = AR(p = 3)
>>> model = model.fit(ts)
>>> fitted_model = model.predict(ts)
>>> prediction = model.forecast(ts, periods = 2)
>>> prediction
1972-10-01 6100.380339
1972-11-01 5637.974302
dtype: float64
AR model using SciKit’s Ridge linear model:
>>> ts = pandas.Series.from_csv('../datasets/champagne.csv', index_col = 0, header = 0)
>>> model = AR_Ridge(p = 3)
>>> model = model.fit(ts)
>>> fitted_model = model.predict(ts)
>>> prediction = model.forecast(ts, periods = 2)
>>> prediction
1972-10-01 6056.234637
1972-11-01 5514.641861
dtype: float64
AR model using SciKit’s Lasso linear model:
>>> ts = pandas.Series.from_csv('../datasets/champagne.csv', index_col = 0, header = 0)
>>> model = AR_Lasso(p = 3)
>>> model = model.fit(ts)
>>> fitted_model = model.predict(ts)
>>> prediction = model.forecast(ts, periods = 2)
>>> prediction
1972-10-01 6056.234513
1972-11-01 5514.641777
dtype: float64
AR model using SciKit’s Elastic Net linear model:
>>> ts = pandas.Series.from_csv('../datasets/champagne.csv', index_col = 0, header = 0)
>>> model = AR_ElasticNet(p = 3)
>>> model = model.fit(ts)
>>> fitted_model = model.predict(ts)
>>> prediction = model.forecast(ts, periods = 2)
>>> prediction
1972-10-01 6056.233741
1972-11-01 5514.641325
dtype: float64
Classes¶
-
class
skfore.AR.
AR
(p=None, intercept=None, phi=None)[source]¶ Bases:
skfore.base_model.base_model
Autoregressive model
Parameter optimization method: scipy’s minimization
- Args:
p (int): order.
- Returns:
AR model structure of order p.
-
fit
(ts, error_function=None)[source]¶ Finds optimal parameters using a given optimization function
- Args:
ts (pandas.Series): Time series to fit. error_function (function): Function to estimates error.
- Return:
self
-
forecast
(ts, periods, confidence_interval=None, iterations=300)[source]¶ Predicts future values in a given period
- Args:
ts (pandas.Series): Time series to predict. periods (int): Number of periods ahead to predict.
- Returns:
Time series of predicted values.
-
params2vector
()[source]¶ Parameters to vector
- Args:
None.
- Returns:
Vector parameters of length p+1 to use in optimization.
-
class
skfore.AR.
AR_ElasticNet
(p=None, intercept=None, phi=None, alpha=1.0, copy_X=True, fit_intercept=True, l1_ratio=0.5, max_iter=1000, normalize=False, positive=False, precompute=False, random_state=0, selection='cyclic', tol=0.0001, warm_start=False)[source]¶ Bases:
skfore.AR.AR
Parameter optimization method: SciKit’s Elastic Net linear model
-
class
skfore.AR.
AR_Lasso
(p=None, intercept=None, phi=None, alpha=0.1, copy_X=True, fit_intercept=True, max_iter=1000, normalize=False, positive=False, precompute=False, random_state=None, selection='cyclic', tol=0.0001, warm_start=False)[source]¶ Bases:
skfore.AR.AR
Parameter optimization method: SciKit’s Lasso linear model
-
class
skfore.AR.
AR_Ridge
(p=None, intercept=None, phi=None, alpha=0.5, copy_X=True, fit_intercept=True, max_iter=None, normalize=False, random_state=None, solver='auto', tol=0.001)[source]¶ Bases:
skfore.AR.AR
Parameter optimization method: SciKit’s Ridge linear model