MA Model¶
Overview¶
This module contains MA models using four diferent parameter optimization methods: SciPy’s minimization, SciKit’s Ridge linear model, SciKit’s Lasso linear model and SciKit’s Elastic Net linear model.
Examples¶
MA model using SciPy’s minimization:
>>> ts = pandas.Series.from_csv('../datasets/champagne.csv', index_col = 0, header = 0)
>>> model = MA(q = 3)
>>> model
MA(q = 3, intercept = None, theta = None)
>>> model = model.fit(ts)
>>> model
MA(q = 3, intercept = 0.7576070305877793, theta = [0.47415837 0.96800789 0.50682355])
>>> prediction = model.forecast(ts, periods = 3)
>>> prediction
ci_inf ci_sup series
1972-10-01 NaN NaN 3644.781559
1972-11-01 NaN NaN 4762.075950
1972-12-01 NaN NaN 4204.870830
>>> prediction = model.forecast(ts, periods = 3, confidence_interval = 0.95)
>>> prediction
ci_inf ci_sup series
1972-10-01 -254.905599 6322.683321 3645.819521
1972-11-01 464.706361 7951.797533 4762.630139
1972-12-01 -1114.609601 8133.907219 4205.907253
>>> model.plot(ts, periods = 3, confidence_interval = 0.95)

-
class
skfore.MA.
MA
(q=None, intercept=None, theta=None)[source]¶ Bases:
skfore.base_model.base_model
Moving-average model
Parameter optimization method: scipy’s minimization
- Args:
q (int): order.
- Returns:
MA model structure of order q.
-
fit
(ts, error_function=None)[source]¶ Finds optimal parameters using a given optimization function
- Args:
ts (pandas.Series): Time series to fit. error_function (function): Function to estimates error.
- Return:
self
-
forecast
(ts, periods, confidence_interval=None, iterations=300)[source]¶ Predicts future values in a given period
- Args:
ts (pandas.Series): Time series to predict. periods (int): Number of periods ahead to predict.
- Returns:
Time series of predicted values.
-
params2vector
()[source]¶ Parameters to vector
- Args:
None.
- Returns:
Vector parameters of length q+1 to use in optimization.
-
class
skfore.MA.
MA_ElasticNet
(q=None, intercept=None, theta=None, alpha=1.0, copy_X=True, fit_intercept=True, l1_ratio=0.5, max_iter=1000, normalize=False, positive=False, precompute=False, random_state=0, selection='cyclic', tol=0.0001, warm_start=False)[source]¶ Bases:
skfore.MA.MA
Parameter optimization method: SciKit’s Elastic Net linear model
-
class
skfore.MA.
MA_Lasso
(q=None, intercept=None, theta=None, alpha=0.1, copy_X=True, fit_intercept=True, max_iter=1000, normalize=False, positive=False, precompute=False, random_state=None, selection='cyclic', tol=0.0001, warm_start=False)[source]¶ Bases:
skfore.MA.MA
Parameter optimization method: SciKit’s Lasso linear model
-
class
skfore.MA.
MA_Ridge
(q=None, intercept=None, theta=None, alpha=0.5, copy_X=True, fit_intercept=True, max_iter=None, normalize=False, random_state=None, solver='auto', tol=0.001)[source]¶ Bases:
skfore.MA.MA
Parameter optimization method: SciKit’s Ridge linear model