Organización del código#
Ultima actualización: Mar 6, 2023 | YouTube
[1]:
import pandas as pd
pd.__version__
[1]:
'1.5.2'
[2]:
%%writefile /tmp/data.csv
orderId,price,percentage
1,100$,15.3%
2,120$,22.1%
3,128$,54.2%
4,155$,10.0%
5,234$,6%
Overwriting /tmp/data.csv
[3]:
def load_data(filename):
df = pd.read_csv(filename)
return df
def clean_price_column(df):
df = df.copy()
return df
def clean_percentage_column(df):
df = df.copy()
return df
df = load_data("/tmp/data.csv")
df = clean_price_column(df)
df = clean_percentage_column(df)
display(df)
display(df.dtypes)
orderId | price | percentage | |
---|---|---|---|
0 | 1 | 100$ | 15.3% |
1 | 2 | 120$ | 22.1% |
2 | 3 | 128$ | 54.2% |
3 | 4 | 155$ | 10.0% |
4 | 5 | 234$ | 6% |
orderId int64
price object
percentage object
dtype: object
[4]:
import pandas as pd
def load_data(filename):
df = pd.read_csv(filename)
return df
def clean_price_column(df):
df = df.copy()
df.price = df.price.str.strip("$")
df.price = df.price.astype(int)
return df
def clean_percentage_column(df):
df = df.copy()
return df
df = load_data("/tmp/data.csv")
df = clean_price_column(df)
df = clean_percentage_column(df)
df
[4]:
orderId | price | percentage | |
---|---|---|---|
0 | 1 | 100 | 15.3% |
1 | 2 | 120 | 22.1% |
2 | 3 | 128 | 54.2% |
3 | 4 | 155 | 10.0% |
4 | 5 | 234 | 6% |
[5]:
import pandas as pd
def load_data(filename):
df = pd.read_csv(filename)
return df
def clean_price_column(df):
df = df.copy()
df.price = df.price.str.strip("$")
df.price = df.price.astype(int)
return df
def clean_percentage_column(df):
df = df.copy()
df.percentage = df.percentage.str.strip("%")
df.percentage = df.percentage.astype(float)
return df
df = load_data("/tmp/data.csv")
df = clean_price_column(df)
df = clean_percentage_column(df)
df
[5]:
orderId | price | percentage | |
---|---|---|---|
0 | 1 | 100 | 15.3 |
1 | 2 | 120 | 22.1 |
2 | 3 | 128 | 54.2 |
3 | 4 | 155 | 10.0 |
4 | 5 | 234 | 6.0 |