Terms by Cluster FrameΒΆ
Example
>>> from techminer2.experimental.co_occurrence import TermsByClusterDataFrame
>>> from techminer2.thesaurus.descriptors import ApplyThesaurus, InitializeThesaurus
>>> # Restore the column values to initial values
>>> InitializeThesaurus(root_directory="examples/fintech/", quiet=True).run()
>>> ApplyThesaurus(root_directory="examples/fintech/", quiet=True).run()
>>> # Generate terms by cluster data frame
>>> df = (
... TermsByClusterDataFrame()
... #
... # FIELD:
... .having_terms_in_top(20)
... .having_terms_ordered_by("OCC")
... .having_term_occurrences_between(None, None)
... .having_term_citations_between(None, None)
... .having_terms_in(None)
... #
... # NETWORK:
... .using_clustering_algorithm_or_dict("louvain")
... .using_association_index("association")
... .using_minimum_terms_in_cluster(5)
... #
... # DATABASE:
... .where_root_directory_is("examples/fintech/")
... .where_database_is("main")
... .where_record_years_range_is(None, None)
... .where_record_citations_range_is(None, None)
... .where_records_match(None)
... #
... .run()
... )
>>> # Display the resulting data frame
>>> print(df.to_string())
0 1 2 3
0 FINTECH 38:6131 TECHNOLOGIES 15:1633 THE_DEVELOPMENT 09:1293 BANKS 08:1049
1 THE_FINANCIAL_INDUSTRY 09:2006 FINANCIAL_TECHNOLOGIES 12:1615 INNOVATION 08:1816 DATA 07:1086
2 PRACTITIONER 06:1194 FINANCE 10:1188 THE_FINANCIAL_SERVICES_INDUSTRY 06:1237 CONSUMERS 07:0925
3 THE_FINANCIAL_SECTOR 05:1147 REGULATORS 08:0974 FINANCIAL_SERVICES 06:1116 THE_IMPACT 06:0908
4 INFORMATION_TECHNOLOGY 05:1101 CHINA 06:0673 SERVICES 06:1089
5 FINTECH_COMPANIES 05:1072