Terms by Cluster FrameΒΆ
Example
>>> from techminer2.experimental.emergence import TermsByClusterDataFrame
>>> from techminer2.thesaurus.descriptors import ApplyThesaurus, InitializeThesaurus
>>> # Restore the column values to initial values
>>> InitializeThesaurus(root_directory="examples/fintech/", quiet=True).run()
>>> ApplyThesaurus(root_directory="examples/fintech/", quiet=True).run()
>>> # Generate terms by cluster data frame
>>> df = (
... TermsByClusterDataFrame()
... #
... # EMERGENCE:
... .using_baseline_periods(3)
... .using_recent_periods(3)
... .using_novelty_threshold(0.15)
... .using_total_records_threshold(7)
... .using_periods_with_at_least_one_record(3)
... .using_ratio_threshold(0.5)
... .using_minimum_terms_in_cluster(5)
... #
... # NETWORK:
... .using_clustering_algorithm_or_dict("louvain")
... .using_association_index("association")
... #
... # DATABASE:
... .where_root_directory_is("examples/fintech/")
... .where_database_is("main")
... .where_record_years_range_is(None, None)
... .where_record_citations_range_is(None, None)
... .where_records_match(None)
... #
... .run()
... )
>>> # Display the resulting data frame
>>> print(df.to_string())
0
0 DATA 7:1086
1 CONSUMERS 7:0925