Terms by Cluster SummaryΒΆ
Example
>>> from techminer2.experimental.co_occurrence import TermsByClusterSummary
>>> df = (
... TermsByClusterSummary()
... #
... # FIELD:
... .having_terms_in_top(20)
... .having_terms_ordered_by("OCC")
... .having_term_occurrences_between(None, None)
... .having_term_citations_between(None, None)
... .having_terms_in(None)
... #
... # COUNTERS:
... .using_term_counters(True)
... #
... # NETWORK:
... .using_clustering_algorithm_or_dict("louvain")
... .using_association_index("association")
... .using_minimum_terms_in_cluster(5)
... #
... # DATABASE:
... .where_root_directory_is("examples/fintech/")
... .where_database_is("main")
... .where_record_years_range_is(None, None)
... .where_record_citations_range_is(None, None)
... .where_records_match(None)
... #
... .run()
... )
>>> df
Cluster ... Terms
0 0 ... FINTECH 38:6131; THE_FINANCIAL_INDUSTRY 09:200...
1 1 ... TECHNOLOGIES 15:1633; FINANCIAL_TECHNOLOGIES 1...
2 2 ... THE_DEVELOPMENT 09:1293; INNOVATION 08:1816; T...
3 3 ... BANKS 08:1049; DATA 07:1086; CONSUMERS 07:0925...
[4 rows x 4 columns]