DataframeΒΆ
Example
>>> from techminer2.database.metrics.trending_terms_by_year.user import DataFrame
>>> # Create, configure, and run the generator
>>> generator = (
... DataFrame()
... #
... # FIELD:
... .with_field("raw_author_keywords")
... .having_terms_per_year(5)
... .having_terms_in(None)
... #
... # DATABASE:
... .where_root_directory_is("example/")
... .where_database_is("main")
... .where_record_years_range_is(None, None)
... .where_record_citations_range_is(None, None)
... .where_records_match(None)
... )
>>> df = generator.run()
>>> df.head()
year OCC global_citations year_q1 ... rn height width
raw_author_keywords ...
CONTENT_ANALYSIS 02:0181 2 181 2016 ... 2 0.177333 1
DIGITALIZATION 02:0181 2 181 2016 ... 3 0.177333 1
POPULAR_PRESS 02:0181 2 181 2016 ... 4 0.177333 1
TECHNOLOGY 02:0310 2 310 2016 ... 0 0.177333 2
BANKING 02:0291 2 291 2016 ... 1 0.177333 2
[5 rows x 8 columns]
>>> generator = (
... DataFrame()
... #
... # FIELD:
... .with_field("raw_author_keywords")
... .having_terms_per_year(5)
... .having_terms_in(
... [
... "FINTECH",
... "BLOCKCHAIN",
... "ARTIFICIAL_INTELLIGENCE",
... ]
... )
... #
... # DATABASE:
... .where_root_directory_is("example/")
... .where_database_is("main")
... .where_record_years_range_is(None, None)
... .where_record_citations_range_is(None, None)
... .where_records_match(None)
... )
>>> df = generator.run()
>>> df.head()
year OCC global_citations ... height width
raw_author_keywords ...
FINTECH 31:5168 31 5168 ... 0.97 2
BLOCKCHAIN 02:0305 2 305 ... 0.15 2
ARTIFICIAL_INTELLIGENCE 02:0327 2 327 ... 0.15 1
[3 rows x 8 columns]