Terms by Cluster SummaryΒΆ
>>> from sklearn.cluster import KMeans
>>> kmeans = KMeans(
... n_clusters=4,
... init="k-means++",
... n_init=10,
... max_iter=300,
... tol=0.0001,
... algorithm="lloyd",
... random_state=0,
... )
>>> from techminer2.packages.document_clustering import TermsByClusterSummary
>>> (
... TermsByClusterSummary()
... #
... # FIELD:
... .with_field("raw_keywords")
... .having_terms_in_top(50)
... .having_terms_ordered_by("OCC")
... .having_term_occurrences_between(None, None)
... .having_term_citations_between(None, None)
... .having_terms_in(None)
... #
... # COUNTERS:
... .using_term_counters(True)
... #
... # TFIDF:
... .using_binary_term_frequencies(False)
... .using_row_normalization(None)
... .using_idf_reweighting(False)
... .using_idf_weights_smoothing(False)
... .using_sublinear_tf_scaling(False)
... #
... # CLUSTERING:
... .using_clustering_algorithm_or_dict(kmeans)
... #
... # DATABASE:
... .where_root_directory_is("example/")
... .where_database_is("main")
... .where_record_years_range_is(None, None)
... .where_record_citations_range_is(None, None)
... .where_records_match(None)
... #
... .run()
... )
Cluster ... Terms
0 0 ... SUSTAINABILITY 03:0227; SUSTAINABLE_DEVELOPMEN...
1 1 ... FINTECH 32:5393; FINANCE 11:1950; INNOVATION 0...
2 2 ... MARKETPLACE_LENDING 03:0317; LENDINGCLUB 02:02...
3 3 ... CONTENT_ANALYSIS 02:0181; DIGITALIZATION 02:01...
[4 rows x 4 columns]