Creación de un proyecto básico en ambiente docker#
Ultima modificación: Mayo 14, 2022
Diretorio para almacenar el proyecto#
[1]:
#
# Crea una carpeta para el proyecto. El proyecto también puede estar alojado en
# un repositorio de GitHub.
#
!rm -rf mlruns
!rm -rf /tmp/wine_prj
!mkdir /tmp/wine_prj
Código en Python#
[2]:
%%writefile /tmp/wine_prj/train_elasticnet.py
#
# Puede ejecutarse en la línea de comandos como:
# $ python3 train_elasticnet.py {alpha} {l1_ratio} {verbose}
#
def load_data():
import pandas as pd
url = "http://archive.ics.uci.edu/ml/machine-learning-databases/wine-quality/winequality-red.csv"
df = pd.read_csv(url, sep=";")
y = df["quality"]
x = df.copy()
x.pop("quality")
return x, y
def make_train_test_split(x, y):
from sklearn.model_selection import train_test_split
(x_train, x_test, y_train, y_test) = train_test_split(
x,
y,
test_size=0.25,
random_state=123456,
)
return x_train, x_test, y_train, y_test
def eval_metrics(y_true, y_pred):
from sklearn.metrics import mean_absolute_error, mean_squared_error, r2_score
mse = mean_squared_error(y_true, y_pred)
mae = mean_absolute_error(y_true, y_pred)
r2 = r2_score(y_true, y_pred)
return mse, mae, r2
def report(estimator, mse, mae, r2):
print(estimator, ":", sep="")
print(f" MSE: {mse}")
print(f" MAE: {mae}")
print(f" R2: {r2}")
def run():
#
# Entrena un modelo sklearn ElasticNet
#
import sys
from sklearn.linear_model import ElasticNet
import mlflow
x, y = load_data()
x_train, x_test, y_train, y_test = make_train_test_split(x, y)
alpha = float(sys.argv[1])
l1_ratio = float(sys.argv[2])
verbose = int(sys.argv[3])
print('Tracking directory:', mlflow.get_tracking_uri())
with mlflow.start_run():
estimator = ElasticNet(alpha=alpha, l1_ratio=l1_ratio, random_state=12345)
estimator.fit(x_train, y_train)
mse, mae, r2 = eval_metrics(y_test, y_pred=estimator.predict(x_test))
if verbose > 0:
report(estimator, mse, mae, r2)
mlflow.log_param("alpha", alpha)
mlflow.log_param("l1_ratio", l1_ratio)
mlflow.log_metric("mse", mse)
mlflow.log_metric("mae", mae)
mlflow.log_metric("r2", r2)
mlflow.sklearn.log_model(estimator, "model")
if __name__ == "__main__":
run()
Writing /tmp/wine_prj/train_elasticnet.py
MLproject#
[3]:
%%writefile /tmp/wine_prj/MLproject
name: proyecto-de-demostracion
docker_env:
image: jdvelasq/mlflow:example
entry_points:
main:
parameters:
alpha: {type: float, default: 0.1}
l1_ratio: {type: float, default: 0.1}
verbose: {type: integer, default: 1}
command: 'python3 train_elasticnet.py {alpha} {l1_ratio} {verbose}'
Writing /tmp/wine_prj/MLproject
Docker#
[4]:
%%writefile /tmp/wine_prj/Dockerfile
FROM condaforge/miniforge3
RUN pip install mlflow \
&& pip install pandas \
&& pip install scikit-learn \
&& pip install cloudpickle
Writing /tmp/wine_prj/Dockerfile
Cree el contendor reemplazando su nombre de usuario:
$ docker build -t jdvelasq/mlflow:example .
$ docker push jdvelasq/mlflow:example
Ejecución en el ambiente local con parámetros por defecto#
[5]:
#
# Ejecución con parámetros por defecto
#
!mlflow run /tmp/wine_prj
2022/06/03 22:40:28 INFO mlflow.projects.docker: === Building docker image proyecto-de-demostracion ===
2022/06/03 22:40:28 INFO mlflow.projects.utils: === Created directory /var/folders/34/8tnnc98d5bv6wy7xzfb0qwhh0000gn/T/tmphzu5896c for downloading remote URIs passed to arguments of type 'path' ===
2022/06/03 22:40:28 INFO mlflow.projects.backend.local: === Running command 'docker run --rm -v /Volumes/GitHub/courses-source/notebooks/mlflow/mlruns:/mlflow/tmp/mlruns -v /Volumes/GitHub/courses-source/notebooks/mlflow/mlruns/0/c43b891ced4c490cb90e8468d784ffa6/artifacts:/Volumes/GitHub/courses-source/notebooks/mlflow/mlruns/0/c43b891ced4c490cb90e8468d784ffa6/artifacts -e MLFLOW_RUN_ID=c43b891ced4c490cb90e8468d784ffa6 -e MLFLOW_TRACKING_URI=file:///mlflow/tmp/mlruns -e MLFLOW_EXPERIMENT_ID=0 proyecto-de-demostracion:latest python3 train_elasticnet.py 0.1 0.1 1' in run with ID 'c43b891ced4c490cb90e8468d784ffa6' ===
/opt/conda/lib/python3.9/site-packages/_distutils_hack/__init__.py:30: UserWarning: Setuptools is replacing distutils.
warnings.warn("Setuptools is replacing distutils.")
Tracking directory: file:///mlflow/tmp/mlruns
ElasticNet(alpha=0.1, l1_ratio=0.1, random_state=12345):
MSE: 0.489021012335199
MAE: 0.551252749110561
R2: 0.29836649473051535
2022/06/03 22:40:32 INFO mlflow.projects: === Run (ID 'c43b891ced4c490cb90e8468d784ffa6') succeeded ===
Ejecución en el ambiente local con parámetros suministrados por el usuario#
[6]:
!mlflow run /tmp/wine_prj -P alpha=0.2 -P l1_ratio=0.2 -P verbose=1
2022/06/03 22:40:34 INFO mlflow.projects.docker: === Building docker image proyecto-de-demostracion ===
2022/06/03 22:40:35 INFO mlflow.projects.utils: === Created directory /var/folders/34/8tnnc98d5bv6wy7xzfb0qwhh0000gn/T/tmpbke5zwdd for downloading remote URIs passed to arguments of type 'path' ===
2022/06/03 22:40:35 INFO mlflow.projects.backend.local: === Running command 'docker run --rm -v /Volumes/GitHub/courses-source/notebooks/mlflow/mlruns:/mlflow/tmp/mlruns -v /Volumes/GitHub/courses-source/notebooks/mlflow/mlruns/0/215c210f935d4840b0e69b856e79d62e/artifacts:/Volumes/GitHub/courses-source/notebooks/mlflow/mlruns/0/215c210f935d4840b0e69b856e79d62e/artifacts -e MLFLOW_RUN_ID=215c210f935d4840b0e69b856e79d62e -e MLFLOW_TRACKING_URI=file:///mlflow/tmp/mlruns -e MLFLOW_EXPERIMENT_ID=0 proyecto-de-demostracion:latest python3 train_elasticnet.py 0.2 0.2 1' in run with ID '215c210f935d4840b0e69b856e79d62e' ===
/opt/conda/lib/python3.9/site-packages/_distutils_hack/__init__.py:30: UserWarning: Setuptools is replacing distutils.
warnings.warn("Setuptools is replacing distutils.")
Tracking directory: file:///mlflow/tmp/mlruns
ElasticNet(alpha=0.2, l1_ratio=0.2, random_state=12345):
MSE: 0.5170837474931838
MAE: 0.5701436798648394
R2: 0.2581028767270219
2022/06/03 22:40:39 INFO mlflow.projects: === Run (ID '215c210f935d4840b0e69b856e79d62e') succeeded ===
[7]:
!mlflow run /tmp/wine_prj -P alpha=0.1 -P l1_ratio=0.1 -P verbose=1
2022/06/03 22:40:40 INFO mlflow.projects.docker: === Building docker image proyecto-de-demostracion ===
2022/06/03 22:40:41 INFO mlflow.projects.utils: === Created directory /var/folders/34/8tnnc98d5bv6wy7xzfb0qwhh0000gn/T/tmp3e_opkq0 for downloading remote URIs passed to arguments of type 'path' ===
2022/06/03 22:40:41 INFO mlflow.projects.backend.local: === Running command 'docker run --rm -v /Volumes/GitHub/courses-source/notebooks/mlflow/mlruns:/mlflow/tmp/mlruns -v /Volumes/GitHub/courses-source/notebooks/mlflow/mlruns/0/eaebccc62bf64f1a87778bebe9ea0d16/artifacts:/Volumes/GitHub/courses-source/notebooks/mlflow/mlruns/0/eaebccc62bf64f1a87778bebe9ea0d16/artifacts -e MLFLOW_RUN_ID=eaebccc62bf64f1a87778bebe9ea0d16 -e MLFLOW_TRACKING_URI=file:///mlflow/tmp/mlruns -e MLFLOW_EXPERIMENT_ID=0 proyecto-de-demostracion:latest python3 train_elasticnet.py 0.1 0.1 1' in run with ID 'eaebccc62bf64f1a87778bebe9ea0d16' ===
/opt/conda/lib/python3.9/site-packages/_distutils_hack/__init__.py:30: UserWarning: Setuptools is replacing distutils.
warnings.warn("Setuptools is replacing distutils.")
Tracking directory: file:///mlflow/tmp/mlruns
ElasticNet(alpha=0.1, l1_ratio=0.1, random_state=12345):
MSE: 0.489021012335199
MAE: 0.551252749110561
R2: 0.29836649473051535
2022/06/03 22:40:45 INFO mlflow.projects: === Run (ID 'eaebccc62bf64f1a87778bebe9ea0d16') succeeded ===
[8]:
!mlflow run /tmp/wine_prj -P alpha=0.5 -P l1_ratio=0.5 -P verbose=1
2022/06/03 22:40:46 INFO mlflow.projects.docker: === Building docker image proyecto-de-demostracion ===
2022/06/03 22:40:47 INFO mlflow.projects.utils: === Created directory /var/folders/34/8tnnc98d5bv6wy7xzfb0qwhh0000gn/T/tmpmc9470gt for downloading remote URIs passed to arguments of type 'path' ===
2022/06/03 22:40:47 INFO mlflow.projects.backend.local: === Running command 'docker run --rm -v /Volumes/GitHub/courses-source/notebooks/mlflow/mlruns:/mlflow/tmp/mlruns -v /Volumes/GitHub/courses-source/notebooks/mlflow/mlruns/0/e5f3f7f7915d4c2694e477da57578fd8/artifacts:/Volumes/GitHub/courses-source/notebooks/mlflow/mlruns/0/e5f3f7f7915d4c2694e477da57578fd8/artifacts -e MLFLOW_RUN_ID=e5f3f7f7915d4c2694e477da57578fd8 -e MLFLOW_TRACKING_URI=file:///mlflow/tmp/mlruns -e MLFLOW_EXPERIMENT_ID=0 proyecto-de-demostracion:latest python3 train_elasticnet.py 0.5 0.5 1' in run with ID 'e5f3f7f7915d4c2694e477da57578fd8' ===
/opt/conda/lib/python3.9/site-packages/_distutils_hack/__init__.py:30: UserWarning: Setuptools is replacing distutils.
warnings.warn("Setuptools is replacing distutils.")
Tracking directory: file:///mlflow/tmp/mlruns
ElasticNet(alpha=0.5, random_state=12345):
MSE: 0.6349429447805036
MAE: 0.6453803508338732
R2: 0.0890018368226928
2022/06/03 22:40:51 INFO mlflow.projects: === Run (ID 'e5f3f7f7915d4c2694e477da57578fd8') succeeded ===
MLflow ui#
Para visualizar la interfase use:
mlflow ui
Nota: En docker usar:
mlflow ui --host 0.0.0.0
con:
Detalles de la corrida