Cluster Centers FrameΒΆ

>>> from sklearn.decomposition import PCA
>>> from sklearn.cluster import KMeans
>>> from techminer2.factor_analysis.co_occurrence import cluster_centers_frame
>>> cluster_centers_frame(
...     #
...     # PARAMS:
...     field="author_keywords",
...     association_index=None,
...     #
...     # ITEM PARAMS:
...     top_n=20,
...     occ_range=(None, None),
...     gc_range=(None, None),
...     custom_terms=None,
...     #
...     # DESOMPOSITION:
...     decomposition_estimator = PCA(
...         n_components=5,
...         whiten=False,
...         svd_solver="auto",
...         tol=0.0,
...         iterated_power="auto",
...         n_oversamples=10,
...         power_iteration_normalizer="auto",
...         random_state=0,
...     ),
...     #
...     # CLUSTERING:
...     clustering_estimator_or_dict = KMeans(
...         n_clusters=6,
...         init="k-means++",
...         n_init=10,
...         max_iter=300,
...         tol=0.0001,
...         algorithm="elkan",
...         random_state=0,
...     ),
...     #
...     # DATABASE PARAMS:
...     root_dir="example/",
...     database="main",
...     year_filter=(None, None),
...     cited_by_filter=(None, None),
... )
dim              0         1         2         3         4
cluster
0        -2.295491  0.081013 -1.030189  0.325448  1.224114
1        -1.497389 -0.514843 -1.479097 -0.659790 -0.908773
2        -1.169941 -2.758694  2.169137  0.055023 -0.042967
3        -1.848206  1.992721  0.417640  0.670726 -0.381834
4        28.659528 -0.524730 -0.513789 -0.042977  0.238539
5         2.377465  5.757771  2.713115 -1.188306 -0.116040