Terms by Cluster FrameΒΆ

>>> from sklearn.decomposition import PCA
>>> from sklearn.cluster import KMeans
>>> from techminer2.factor_analysis.co_occurrence import terms_by_cluster_frame
>>> terms_by_cluster_frame(
...     #
...     # PARAMS:
...     field="author_keywords",
...     association_index=None,
...     #
...     # ITEM PARAMS:
...     top_n=20,
...     occ_range=(None, None),
...     gc_range=(None, None),
...     custom_terms=None,
...     #
...     # DESOMPOSITION PARAMS:
...     decomposition_estimator = PCA(
...         n_components=5,
...         whiten=False,
...         svd_solver="auto",
...         tol=0.0,
...         iterated_power="auto",
...         n_oversamples=10,
...         power_iteration_normalizer="auto",
...         random_state=0,
...     ),
...     #
...     # CLUSTERING:
...     clustering_estimator_or_dict = KMeans(
...         n_clusters=6,
...         init="k-means++",
...         n_init=10,
...         max_iter=300,
...         tol=0.0001,
...         algorithm="elkan",
...         random_state=0,
...     ),
...     #
...     # DATABASE PARAMS:
...     root_dir="example/",
...     database="main",
...     year_filter=(None, None),
...     cited_by_filter=(None, None),
... ).head()
                                 0  ...                   5
0          BUSINESS_MODELS 02:0759  ...  INNOVATION 07:0911
1  ARTIFICIAL_INTELLIGENCE 02:0327  ...
2                  FINANCE 02:0309  ...
3                   ROBOTS 02:0289  ...
4                  REGTECH 02:0266  ...

[5 rows x 6 columns]