Cluster Centers FrameΒΆ

>>> from sklearn.decomposition import PCA
>>> from sklearn.cluster import KMeans
>>> from techminer2.factor_analysis.tfidf import cluster_centers_frame
>>> cluster_centers_frame(
...     #
...     # PARAMS:
...     field="author_keywords",
...     #
...     # TF PARAMS:
...     is_binary=True,
...     cooc_within=1,
...     #
...     # TF-IDF PARAMS:
...     norm=None,
...     use_idf=False,
...     smooth_idf=False,
...     sublinear_tf=False,
...     #
...     # TERM PARAMS:
...     top_n=20,
...     occ_range=(None, None),
...     gc_range=(None, None),
...     custom_terms=None,
...     #
...     # DESOMPOSITION PARAMS:
...     decomposition_estimator = PCA(
...         n_components=5,
...         whiten=False,
...         svd_solver="auto",
...         tol=0.0,
...         iterated_power="auto",
...         n_oversamples=10,
...         power_iteration_normalizer="auto",
...         random_state=0,
...     ),
...     #
...     # CLUSTERING:
...     clustering_estimator_or_dict = KMeans(
...         n_clusters=6,
...         init="k-means++",
...         n_init=10,
...         max_iter=300,
...         tol=0.0001,
...         algorithm="elkan",
...         random_state=0,
...     ),
...     #
...     # DATABASE PARAMS:
...     root_dir="example/",
...     database="main",
...     year_filter=(None, None),
...     cited_by_filter=(None, None),
... )
dim             0         1         2         3         4
cluster
0       -0.201359 -0.145628 -0.537202 -0.307006 -0.472928
1       -0.237531 -0.943339  0.790967  0.032676 -0.003779
2       -0.203930  0.314080 -0.207809  0.815849 -0.031831
3       -0.254730  1.080850  0.568245 -0.299478 -0.064949
4       -0.474124  0.044653 -0.408102 -0.313095  0.858150
5        4.959197 -0.131331 -0.127054 -0.021353  0.127476