Terms by Dimension FraneΒΆ

>>> from sklearn.decomposition import PCA
>>> from techminer2.factor_analysis.tfidf import terms_by_dimension_frame
>>> terms_by_dimension_frame(
...     #
...     # PARAMS:
...     field="author_keywords",
...     #
...     # TF PARAMS:
...     is_binary=True,
...     cooc_within=1,
...     #
...     # TF-IDF PARAMS:
...     norm=None,
...     use_idf=False,
...     smooth_idf=False,
...     sublinear_tf=False,
...     #
...     # TERM PARAMS:
...     top_n=20,
...     occ_range=(None, None),
...     gc_range=(None, None),
...     custom_terms=None,
...     #
...     # DESOMPOSITION PARAMS:
...     decomposition_estimator = PCA(
...         n_components=5,
...         whiten=False,
...         svd_solver="auto",
...         tol=0.0,
...         iterated_power="auto",
...         n_oversamples=10,
...         power_iteration_normalizer="auto",
...         random_state=0,
...     ),
...     #
...     # DATABASE PARAMS:
...     root_dir="example/",
...     database="main",
...     year_filter=(None, None),
...     cited_by_filter=(None, None),
... ).head()
dim                                  0         1         2         3         4
author_keywords
FINTECH 31:5168               4.959197 -0.131331 -0.127054 -0.021353  0.127476
INNOVATION 07:0911            0.316050  1.870215  1.111843 -0.552452 -0.021560
FINANCIAL_SERVICES 04:0667   -0.082353  0.895051  0.128205  1.239682 -0.242869
FINANCIAL_INCLUSION 03:0590  -0.039071 -0.170843 -0.618483 -0.383141 -0.474122
FINANCIAL_TECHNOLOGY 03:0461 -0.228786  0.327462 -0.051164  0.419388 -0.291788