Factor MapΒΆ

>>> from sklearn.decomposition import PCA
>>> from sklearn.cluster import KMeans
>>> from techminer2.factor_analysis.co_occurrence import factor_map
>>> plot = factor_map(
...     #
...     # PARAMS:
...     field="author_keywords",
...     association_index=None,
...     #
...     # ITEM PARAMS:
...     top_n=20,
...     occ_range=(None, None),
...     gc_range=(None, None),
...     custom_terms=None,
...     #
...     # DESOMPOSITION:
...     decomposition_estimator = PCA(
...         n_components=5,
...         whiten=False,
...         svd_solver="auto",
...         tol=0.0,
...         iterated_power="auto",
...         n_oversamples=10,
...         power_iteration_normalizer="auto",
...         random_state=0,
...     ),
...     #
...     # CLUSTERING:
...     clustering_estimator_or_dict = KMeans(
...         n_clusters=6,
...         init="k-means++",
...         n_init=10,
...         max_iter=300,
...         tol=0.0001,
...         algorithm="elkan",
...         random_state=0,
...     ),
...     #
...     # LAYOUT:
...     nx_k=None,
...     nx_iterations=30,
...     nx_random_state=0,
...     #
...     # NODES:
...     node_color="#7793a5",
...     node_size_range=(30, 70),
...     textfont_size_range=(10, 20),
...     textfont_opacity_range=(0.35, 1.00),
...     #
...     # EDGES:
...     edge_top_n=None,
...     edge_similarity_min=None,
...     edge_widths=(2, 2, 4, 6),
...     edge_colors=("#7793a5", "#7793a5", "#7793a5", "#7793a5"),
...     #
...     # AXES:
...     xaxes_range=None,
...     yaxes_range=None,
...     show_axes=False,
...     #
...     # DATABASE PARAMS:
...     root_dir="example/",
...     database="main",
...     year_filter=(None, None),
...     cited_by_filter=(None, None),
... )
>>> # plot.write_html("sphinx/_static/factor_analysis/co_occurrence/factor_map.html")