Terms by Dimension FrameΒΆ

>>> from sklearn.decomposition import PCA
>>> from techminer2.factor_analysis.co_occurrence import terms_by_dimension_frame
>>> terms_by_dimension_frame(
...     #
...     # PARAMS:
...     field="author_keywords",
...     association_index=None,
...     #
...     # ITEM PARAMS:
...     top_n=20,
...     occ_range=(None, None),
...     gc_range=(None, None),
...     custom_terms=None,
...     #
...     # DESOMPOSITION PARAMS:
...     decomposition_estimator = PCA(
...         n_components=5,
...         whiten=False,
...         svd_solver="auto",
...         tol=0.0,
...         iterated_power="auto",
...         n_oversamples=10,
...         power_iteration_normalizer="auto",
...         random_state=0,
...     ),
...     #
...     # DATABASE PARAMS:
...     root_dir="example/",
...     database="main",
...     year_filter=(None, None),
...     cited_by_filter=(None, None),
... ).head()
dim                                   0         1         2         3         4
rows
FINTECH 31:5168               28.659528 -0.524730 -0.513789 -0.042977  0.238539
INNOVATION 07:0911             2.377465  5.757771  2.713115 -1.188306 -0.116040
FINANCIAL_SERVICES 04:0667    -0.090716  2.761290  0.416833  2.583089 -0.502611
FINANCIAL_INCLUSION 03:0590   -0.631683 -0.611095 -1.728676 -0.825425 -0.947171
FINANCIAL_TECHNOLOGY 03:0461  -1.487691  0.959672 -0.271058  0.837526 -0.690393