Terms to Cluster MappingΒΆ

>>> from sklearn.decomposition import PCA
>>> from sklearn.cluster import KMeans
>>> from techminer2.factor_analysis.tfidf import terms_to_cluster_mapping
>>> mapping = terms_to_cluster_mapping(
...     #
...     # PARAMS:
...     field="author_keywords",
...     #
...     # TF PARAMS:
...     is_binary=True,
...     cooc_within=1,
...     #
...     # TF-IDF PARAMS:
...     norm=None,
...     use_idf=False,
...     smooth_idf=False,
...     sublinear_tf=False,
...     #
...     # TERM PARAMS:
...     top_n=20,
...     occ_range=(None, None),
...     gc_range=(None, None),
...     custom_terms=None,
...     #
...     # DESOMPOSITION PARAMS:
...     decomposition_estimator = PCA(
...         n_components=5,
...         whiten=False,
...         svd_solver="auto",
...         tol=0.0,
...         iterated_power="auto",
...         n_oversamples=10,
...         power_iteration_normalizer="auto",
...         random_state=0,
...     ),
...     #
...     # CLUSTERING:
...     clustering_estimator_or_dict = KMeans(
...         n_clusters=6,
...         init="k-means++",
...         n_init=10,
...         max_iter=300,
...         tol=0.0001,
...         algorithm="elkan",
...         random_state=0,
...     ),
...     #
...     # DATABASE PARAMS:
...     root_dir="example/",
...     database="main",
...     year_filter=(None, None),
...     cited_by_filter=(None, None),
... )
>>> from pprint import pprint
>>> pprint(mapping)
{'ARTIFICIAL_INTELLIGENCE 02:0327': 4,
 'BANKING 02:0291': 3,
 'BLOCKCHAIN 02:0305': 0,
 'BUSINESS_MODELS 02:0759': 2,
 'CASE_STUDY 02:0340': 0,
 'CROWDFUNDING 03:0335': 0,
 'CYBER_SECURITY 02:0342': 0,
 'FINANCE 02:0309': 4,
 'FINANCIAL_INCLUSION 03:0590': 0,
 'FINANCIAL_SERVICES 04:0667': 2,
 'FINANCIAL_TECHNOLOGY 03:0461': 2,
 'FINTECH 31:5168': 5,
 'INNOVATION 07:0911': 3,
 'LENDINGCLUB 02:0253': 1,
 'MARKETPLACE_LENDING 03:0317': 1,
 'PEER_TO_PEER_LENDING 02:0253': 1,
 'REGTECH 02:0266': 2,
 'ROBOTS 02:0289': 4,
 'SHADOW_BANKING 02:0253': 1,
 'TECHNOLOGY 02:0310': 3}