Gráficos de línea con intervalos de confianza usando relplot(). —-#

  • 0:00 min | Última modificación: Octubre 13, 2021 | [YouTube]

[1]:
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import seaborn as sns
[2]:
fmri = sns.load_dataset("fmri")

display(
    fmri.head(),
    fmri.size
)
subject timepoint event region signal
0 s13 18 stim parietal -0.017552
1 s5 14 stim parietal -0.080883
2 s12 18 stim parietal -0.081033
3 s11 18 stim parietal -0.046134
4 s10 18 stim parietal -0.037970
5320
[3]:
#
# Exisen diferentes medidas para cada sujeto,
# timepoint, .....
#
fmri[fmri.timepoint == 18].head()
[3]:
subject timepoint event region signal
0 s13 18 stim parietal -0.017552
2 s12 18 stim parietal -0.081033
3 s11 18 stim parietal -0.046134
4 s10 18 stim parietal -0.037970
5 s9 18 stim parietal -0.103513
[4]:
#
# Gráfica por defecto mostrando los datos
#
sns.relplot(
    x="timepoint",
    y="signal",
    data=fmri,
    kind='scatter',
)
plt.show()
../../_images/02_seaborn_notebooks_2-22_relational_relplot_line_uncertainty_4_0.png
[5]:
#
# Representación de la incertidumbre
# =============================================================================
# Usa por defecto los intervalos de confianza del 95%
#
sns.relplot(
    x="timepoint",
    y="signal",
    kind="line",
    data=fmri,
)
plt.show()
../../_images/02_seaborn_notebooks_2-22_relational_relplot_line_uncertainty_5_0.png
[6]:
#
# Reemplazo de los ci por desviaciones estándar
#
sns.relplot(
    x="timepoint",
    y="signal",
    kind="line",
    ci="sd",
    data=fmri,
)
plt.show()
../../_images/02_seaborn_notebooks_2-22_relational_relplot_line_uncertainty_6_0.png
[7]:
#
# Separación por clases usando colores.
#
sns.relplot(
    x="timepoint",
    y="signal",
    hue="event",
    kind="line",
    data=fmri,
)
plt.show()
../../_images/02_seaborn_notebooks_2-22_relational_relplot_line_uncertainty_7_0.png
[8]:
#
# Separación por clases usando style
#
sns.relplot(
    x="timepoint",
    y="signal",
    style="event",
    kind="line",
    data=fmri,
)
plt.show()
../../_images/02_seaborn_notebooks_2-22_relational_relplot_line_uncertainty_8_0.png
[9]:
#
# Separación por clases usando marcadores y linea.
#
sns.relplot(
    x="timepoint",
    y="signal",
    style="event",
    markers=True,
    kind="line",
    data=fmri,
)
plt.show()
../../_images/02_seaborn_notebooks_2-22_relational_relplot_line_uncertainty_9_0.png
[10]:
#
# Separación por clases usando solot marcadores.
#
sns.relplot(
    x="timepoint",
    y="signal",
    style="event",
    markers=True,
    dashes=False,
    kind="line",
    data=fmri,
)
plt.show()
../../_images/02_seaborn_notebooks_2-22_relational_relplot_line_uncertainty_10_0.png
[11]:
#
# Separación basada en multiples elementos.
#
sns.relplot(
    x="timepoint",
    y="signal",
    hue="region",
    style="event",
    dashes=False,
    markers=True,
    kind="line",
    data=fmri,
)
plt.show()
../../_images/02_seaborn_notebooks_2-22_relational_relplot_line_uncertainty_11_0.png