Matrix plots en Seaborn —#

  • 0:00 min | Última modificación: Octubre 13, 2021 | [YouTube]

[1]:
from string import ascii_letters

import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import seaborn as sns
[2]:
#
# Heatmap básico
#
df = pd.DataFrame(
    np.random.random((10, 10)),
    columns=["a", "b", "c", "d", "e", "f", "g", "h", "i", "j"],
)

sns.heatmap(
    df,
    annot=True,
    annot_kws={"size": 7},
)

plt.show()
../../_images/02_seaborn_notebooks_7-70_matrix_plots_2_0.png
[3]:
mtcars = pd.read_csv(
    "https://raw.githubusercontent.com/jdvelasq/datalabs/master/datasets/mtcars.csv",
)

mtcars = mtcars.set_index('model')

mtcars.head()
[3]:
mpg cyl disp hp drat wt qsec vs am gear carb
model
Mazda RX4 21.0 6 160.0 110 3.90 2.620 16.46 0 1 4 4
Mazda RX4 Wag 21.0 6 160.0 110 3.90 2.875 17.02 0 1 4 4
Datsun 710 22.8 4 108.0 93 3.85 2.320 18.61 1 1 4 1
Hornet 4 Drive 21.4 6 258.0 110 3.08 3.215 19.44 1 0 3 1
Hornet Sportabout 18.7 8 360.0 175 3.15 3.440 17.02 0 0 3 2
[4]:
sns.clustermap(
    mtcars,
    metric="correlation",
    method="single",
    cmap="Blues",
    standard_scale=1,
)

plt.show()
../../_images/02_seaborn_notebooks_7-70_matrix_plots_4_0.png