Evaluación de scores con cross_val_score — 2:45#
Ultima modificación: 2023-02-27 | YouTube
Evalua una medida de score usando cross-validation.
[1]:
import numpy as np
from sklearn import datasets, linear_model
from sklearn.model_selection import cross_val_score
diabetes = datasets.load_diabetes()
X = diabetes.data[:150]
y = diabetes.target[:150]
lasso = linear_model.Lasso()
cross_val_score(
# -------------------------------------------------------------------------
# The object to use to fit the data. Must implement fit()
estimator=lasso,
# -------------------------------------------------------------------------
# The data to fit. Can be for example a list, or an array.
X=X,
# -------------------------------------------------------------------------
# The target variable to try to predict in the case of supervised learning.
y=y,
# -------------------------------------------------------------------------
# Group labels for the samples used while splitting the dataset into
# train/test set. Only used in conjunction with a “Group” cv instance
# (e.g., GroupKFold).
groups=None,
# -------------------------------------------------------------------------
# Determines the cross-validation splitting strategy.
cv=3,
# -------------------------------------------------------------------------
# The verbosity level.
verbose=0,
# -------------------------------------------------------------------------
# Parameters to pass to the fit method of the estimator.
fit_params=None,
# -------------------------------------------------------------------------
#
error_score=np.nan,
)
[1]:
array([0.3315057 , 0.08022103, 0.03531816])