Generación de combinaciones de hiperparámetros con ParameterGrid#
[1]:
from sklearn.model_selection import ParameterGrid
from sklearn.svm import SVC
param_grid = [
# -------------------------------------------------------------------------
# Primera malla de parámetros
{
"kernel": ["rbf"],
"gamma": [1e-3, 1e-4],
"C": [1, 10, 100, 1000],
},
# -------------------------------------------------------------------------
# Segunda malla de parámetros
{
"kernel": ["linear"],
"C": [1, 10, 100, 1000],
},
]
parameterGrid = ParameterGrid(param_grid)
list(parameterGrid)
[1]:
[{'C': 1, 'gamma': 0.001, 'kernel': 'rbf'},
{'C': 1, 'gamma': 0.0001, 'kernel': 'rbf'},
{'C': 10, 'gamma': 0.001, 'kernel': 'rbf'},
{'C': 10, 'gamma': 0.0001, 'kernel': 'rbf'},
{'C': 100, 'gamma': 0.001, 'kernel': 'rbf'},
{'C': 100, 'gamma': 0.0001, 'kernel': 'rbf'},
{'C': 1000, 'gamma': 0.001, 'kernel': 'rbf'},
{'C': 1000, 'gamma': 0.0001, 'kernel': 'rbf'},
{'C': 1, 'kernel': 'linear'},
{'C': 10, 'kernel': 'linear'},
{'C': 100, 'kernel': 'linear'},
{'C': 1000, 'kernel': 'linear'}]