Valores predefinidos#
Convención: Los valores más altos indican mejores modelos.
Estas métricas están disponibles en:
https://scikit-learn.org/stable/modules/model_evaluation.html
Listado de funciones disponibles#
[1]:
from sklearn.metrics import get_scorer_names
get_scorer_names()
[1]:
['accuracy',
'adjusted_mutual_info_score',
'adjusted_rand_score',
'average_precision',
'balanced_accuracy',
'completeness_score',
'explained_variance',
'f1',
'f1_macro',
'f1_micro',
'f1_samples',
'f1_weighted',
'fowlkes_mallows_score',
'homogeneity_score',
'jaccard',
'jaccard_macro',
'jaccard_micro',
'jaccard_samples',
'jaccard_weighted',
'matthews_corrcoef',
'max_error',
'mutual_info_score',
'neg_brier_score',
'neg_log_loss',
'neg_mean_absolute_error',
'neg_mean_absolute_percentage_error',
'neg_mean_gamma_deviance',
'neg_mean_poisson_deviance',
'neg_mean_squared_error',
'neg_mean_squared_log_error',
'neg_median_absolute_error',
'neg_root_mean_squared_error',
'normalized_mutual_info_score',
'precision',
'precision_macro',
'precision_micro',
'precision_samples',
'precision_weighted',
'r2',
'rand_score',
'recall',
'recall_macro',
'recall_micro',
'recall_samples',
'recall_weighted',
'roc_auc',
'roc_auc_ovo',
'roc_auc_ovo_weighted',
'roc_auc_ovr',
'roc_auc_ovr_weighted',
'top_k_accuracy',
'v_measure_score']
Ejemplo#
[4]:
from sklearn import datasets, svm
from sklearn.model_selection import cross_val_score
X, y = datasets.load_iris(return_X_y=True)
clf = svm.SVC(random_state=0)
cross_val_score(clf, X, y, cv=5, scoring="accuracy")
[4]:
array([0.96666667, 0.96666667, 0.96666667, 0.93333333, 1. ])