Binarizer#

[1]:
import numpy as np

X = np.array(
    [
        [1.0, -1.0, 2.0],
        [2.0, 0.0, 0.0],
        [0.0, 1.0, -1.0],
    ]
)
X
[1]:
array([[ 1., -1.,  2.],
       [ 2.,  0.,  0.],
       [ 0.,  1., -1.]])
[2]:
from sklearn.preprocessing import Binarizer

binarizer = Binarizer(
    # -------------------------------------------------------------------------
    # Feature values below or equal to this are replaced by 0, above it by 1.
    threshold=0.5,
)

binarizer.fit(X)

binarizer.transform(X)
[2]:
array([[1., 0., 1.],
       [1., 0., 0.],
       [0., 1., 0.]])