Accuracy Score#
Cómputa la cantidad o porcentaje de predicciones correctas.
Se calcula como:
| Pronóstico
| PP PN
---------|------------
P | TP FN
Real |
N | FP TN
\text{accuracy} =\frac{\text{TP} +\text{TN}}{\text{P} + \text{N}} =\frac{\text{TP}+\text{TN}}{\text{TP}+\text{TN}+\text{FP}+\text{FN}}
\text{accuracy}(y, \hat{y})=\frac{1}{N} \sum_{i=0}^{N-1} 1(\hat{y}_i = y_i)
donde 1(x) es la función indicador, definida como:
1_A(x)=\left\{ \begin{array}{c l} 1 & \quad \textrm{if } x \in A \\ 0 & \quad \textrm{otherwise} \end{array} \right.
[1]:
from sklearn.metrics import accuracy_score
y_true = [0, 1, 2, 3]
y_pred = [0, 2, 1, 3]
accuracy_score(
# -------------------------------------------------------------------------
# Ground truth (correct) labels.
y_true=y_true,
# -------------------------------------------------------------------------
# Predicted labels, as returned by a classifier.
y_pred=y_pred,
# -------------------------------------------------------------------------
# If False, return the number of correctly classified samples. Otherwise,
# return the fraction of correctly classified samples.
normalize=True,
# -------------------------------------------------------------------------
# Sample weights.
sample_weight=None,
)
[1]:
0.5
[2]:
accuracy_score(
y_true=y_true,
y_pred=y_pred,
normalize=False,
)
[2]:
2