LarsCV#
Implementa un modelo LARS con validación cruzada.
[1]:
from sklearn.datasets import load_diabetes
X, y = load_diabetes(return_X_y=True)
[2]:
from sklearn.linear_model import LarsCV
larsCV = LarsCV(
# ---------------------------------------------------------------------
# Whether to fit the intercept for this model.
fit_intercept=True,
# --------------------------------------------------------------------------
# The maximum number of iterations.
max_iter=500,
# --------------------------------------------------------------------------
# Determines the cross-validation splitting strategy. Possible inputs for
# cv are:
# * None, to use the default 5-fold cross-validation,
# * int, to specify the number of folds.
# * CV splitter,
# * An iterable yielding (train, test) splits as arrays of indices.
cv=None,
# --------------------------------------------------------------------------
# The maximum number of points on the path used to compute the residuals in
# the cross-validation.
max_n_alphas=1000,
)
[3]:
larsCV.fit(X, y)
larsCV.score(X, y)
[3]:
0.5000524336939126
[4]:
larsCV.alpha_
[4]:
0.16079438841644006
[5]:
larsCV.coef_
[5]:
array([ 0. , -108.03748015, 511.97451874, 250.57032169,
0. , 0. , -193.2451994 , 0. ,
452.20797343, 10.79581283])
[6]:
larsCV.intercept_
[6]:
152.13348416289602