Zero one loss#
Calcula la suma o el promedio de perdida de clasificación 0-1 sobre n_\text{samples}
Se computa como:
L_{0-1}(y, \hat{y})= \frac{1}{n_\text{samples}} \sum_{i=0}^{\text{samples}-1} 1(\hat{y}_i \ne y_i) = 1 - \text{accuracy}(y, \hat{y})
[1]:
from sklearn.metrics import zero_one_loss
y_pred = [1, 2, 3, 4]
y_true = [2, 2, 3, 4]
zero_one_loss(
# -------------------------------------------------------------------------
# Ground truth (correct) target values.
y_true=y_true,
# -------------------------------------------------------------------------
# Estimated targets as returned by a classifier.
y_pred=y_pred,
# -------------------------------------------------------------------------
# If False, return the number of misclassifications. Otherwise, return the
# fraction of misclassifications.
normalize=True,
# -------------------------------------------------------------------------
# Sample weights.
sample_weight=None,
)
[1]:
0.25
[2]:
zero_one_loss(
y_true,
y_pred,
normalize=False,
)
[2]:
1